블로그 이미지
Morning lark

카테고리

분류 전체보기 (1898)
Fuel Cell (851)
New Energy (917)
Energy Storage (6)
New Biz Item (2)
Total
Today
Yesterday

MI 4MW PEM Electrolyser Boosts Green Hydrogen Production at API SARPOM Refinery

IMI is supplying a 4 MW PEM electrolyser to the SARPOM Refinery in Trecate, Novara, Italy operated by IP Gruppo API.

The investment forms part of API’s ‘Impianto di Produzione Idrogeno Verde’ (Green Hydrogen Production Plant) project. Funded by the Piedmont Region through the Piano Nazionale di Ripresa e Resilienza (National Recovery and Resilience Plan), this initiative aims to produce green hydrogen using energy generated by two photovoltaic fields located within the refinery. These fields will deliver an estimated annual production of more than 8,500 MWh of renewable energy.

Hydrogen will be produced by a 4 MW PEM electrolyser designed and built by IMI, which will be installed in a decommissioned area of the refinery previously used for hydrocarbon storage. This area will be revitalised, aligning with the regional funding guidelines. The estimated annual production is at least 167 metric tons of renewable hydrogen, which will replace a portion of the non-renewable hydrogen currently used in refining processes.

Factory testing was completed in December 2024, and the final assembly of the electrolyser is already underway, with delivery and commissioning planned for the first half of 2025.

Giuseppe Buscemi, EMEA President of Process Automation at IMI, said:

This project showcases the power and versatility of our PEM electrolysers.

“We are pushing decarbonisation forward within heavy industry, and our work with API sets a great precedent as one of Italy’s first 4 MW PEM hydrogen electrolysers.”

One of the IMI VIVO electrolyser’s key strengths is its electrical connection system. Use of Insulated Gate Bipolar Transistors’ (IGBT) high-frequency switching technology improves the quality of energy supplied to the electrolyser while also offering greater modularity, making the system more flexible.

Each skid-mounted module from IMI incorporates a complete system for water treatment, purification, and cooling, designed with robust safeguards at every stage. Advanced calculation techniques, such as finite element analysis (FEA), evaluate the impact of overpressure on oxygen vessels, while fluid dynamics simulations continuously monitor hydrogen leaks to ensure the efficiency of venting fans. Additionally, a detailed hazard and risk analysis (HAZOP) is conducted, informed by IMI’s experience in the oil & gas sector to ensure reliability and operational security.

 

IMI 4MW PEM Electrolyser Boosts Green Hydrogen Production at API SARPOM Refinery - Hydrogen Central

 

IMI 4MW PEM Electrolyser Boosts Green Hydrogen Production at API SARPOM Refinery - Hydrogen Central

IMI 4MW PEM Electrolyser Boosts Green Hydrogen Production at API SARPOM Refinery IMI is supplying a 4 MW PEM electrolyser to the SARPOM

hydrogen-central.com

 

Posted by Morning lark
, |
Duferco Energia and Ansaldo Green Tech have signed a strategic agreement for the supply and commissioning of a 1 MW electrolyser, designed to produce green hydrogen as part of the Hydrogen Valley project in Giammoro, in the province of Messina, Sicily, Italy.
 

Supported by the National Recovery and Resilience Plan (PNRR) through the Sicilian Region, this initiative represents one of the key projects of European relevance in the energy transition and the development of Italy’s hydrogen value chain.

The electrolyser, supplied by Ansaldo Green Tech, employs anion exchange membrane (AEM) technology, offering high efficiency and operational flexibility. Developed within the framework of the IPCEI project and funded by the European Union’s ‘NextGenerationEU’ programme, the system will be assembled on a new production line currently under construction in Genova Campi, Italy. It will be capable of producing over 500 kg/d of green hydrogen, with optimised energy consumption and a purity level of 99.9%.

The Giammoro Hydrogen Valley project includes the installation of a 4 MW photovoltaic system to power the electrolyser, enabling the production of around 100 tpy of green hydrogen. The hydrogen produced will primarily support the decarbonisation of key industrial sectors, including steel, logistics, and mobility.

With a total investment of €10 million, the Hydrogen Valley project represents a sustainable development model for southern Italy. It is expected to significantly boost the local economy by creating new job opportunities and promoting the growth of industries related to the production and distribution of green hydrogen.

“The Hydrogen Valley in Sicily represents a concrete step toward the energy transition and the strengthening of the island’s energy independence,” said Massimo Croci, CEO of Duferco Energia. “This initiative will not only generate environmental benefits but also provide new economic and employment opportunities for the region. Environmental sustainability can go hand in hand with industrial and social development.”

“We are proud to contribute to the Giammoro-Messina Hydrogen Valley project led by Duferco Energia,” added Vittorio Olcese, CEO of Ansaldo Green Tech. “This agreement is a strong endorsement of Ansaldo Green Tech’s technology, focused on efficiency and flexibility in the production of green hydrogen to decarbonise sectors such as mobility, logistics, and hard-to-abate industries like steel.”

The initiative is aligned with the European decarbonisation strategies outlined in the RePowerEU plan, which aims to reduce reliance on fossil fuels and accelerate the adoption of renewable energy. The Giammoro Hydrogen Valley will therefore contribute not only to local environmental sustainability but also to the EU’s climate neutrality goals.

Duferco Energia and Ansaldo Green Tech sign agreement for green hydrogen production | Global Hydrogen Review

 

Duferco Energia and Ansaldo Green Tech sign agreement for green hydrogen production

Duferco Energia and Ansaldo Green Tech have signed an agreement for the supply and commissioning of a 1 MW electrolyser, designed to produce green hydrogen in Giammoro, Sicily, Italy.

www.globalhydrogenreview.com

 

Posted by Morning lark
, |

 

Sunlight and sugarcane waste power hydrogen production at rate four times higher than commercialization benchmark

 

A technology for hydrogen (H2) production has been developed by a team of researchers led by Professors Seungho Cho and Kwanyong Seo from the School of Energy and Chemical Engineering at UNIST, in collaboration with Professor Ji-Wook Jang’s team from the Department of Materials Science and Engineering at UNIST.

 

Their research is published in the journal Nature Communications.

 

This innovative method utilizes biomass derived from sugarcane waste and silicon photoelectrodes to generate H2 exclusively using sunlight, achieving a production rate four times higher than the commercialization benchmark set by the U.S. Department of Energy (DOE).

 

H2 is recognized as a next-generation fuel since it emits no greenhouse gases when burned and stores energy at a density 2.7 times greater than gasoline. Despite this, the majority of H2 produced today is derived from natural gas, a process that generates substantial carbon dioxide emissions.

 

The research team has developed a photoelectrochemical (PEC) H2 production system that facilitates H2 production without carbon dioxide (CO2) emissions by utilizing furfural extracted from sugarcane waste.

 

In this system, furfural is oxidized at the copper electrode to produce H2, with the residual material converting into furoic acid, a high-value product.

 

H2 is produced at both electrodes in this system. At the opposing silicon photoelectrode, water is also split to yield H2. This dual production mechanism theoretically doubles the production rate compared to conventional PEC systems, with the actual performance reaching 1.4 mmol/cm2·h, nearly four times the U.S. Department of Energy’s target of 0.36 mmol/cm2·h.

 

The H2 production process begins when the photoelectrode absorbs sunlight and generates electrons. Crystalline silicon photoelectrodes are advantageous for H2 production due to their capacity to generate a significant number of electrons. However, the low voltage generated (0.6 V) makes it challenging to initiate H2 production reactions without external power.

 

The research team addressed this issue by introducing the oxidation reaction of furfural on the opposing electrode to balance the system’s voltage.

This innovative method utilizes biomass derived from sugarcane waste and silicon photoelectrodes to generate H2 exclusively using sunlight, achieving a production rate four times higher than the commercialization benchmark set by the U.S. Department of Energy (DOE).

 

H2 is recognized as a next-generation fuel since it emits no greenhouse gases when burned and stores energy at a density 2.7 times greater than gasoline. Despite this, the majority of H2 produced today is derived from natural gas, a process that generates substantial carbon dioxide emissions.

 

The research team has developed a photoelectrochemical (PEC) H2 production system that facilitates H2 production without carbon dioxide (CO2) emissions by utilizing furfural extracted from sugarcane waste.

 

In this system, furfural is oxidized at the copper electrode to produce H2, with the residual material converting into furoic acid, a high-value product.

 

H2 is produced at both electrodes in this system. At the opposing silicon photoelectrode, water is also split to yield H2. This dual production mechanism theoretically doubles the production rate compared to conventional PEC systems, with the actual performance reaching 1.4 mmol/cm2·h, nearly four times the U.S. Department of Energy’s target of 0.36 mmol/cm2·h.

 

The H2 production process begins when the photoelectrode absorbs sunlight and generates electrons. Crystalline silicon photoelectrodes are advantageous for H2 production due to their capacity to generate a significant number of electrons. However, the low voltage generated (0.6 V) makes it challenging to initiate H2 production reactions without external power.

 

The research team addressed this issue by introducing the oxidation reaction of furfural on the opposing electrode to balance the system’s voltage.

 

Additionally, this system employs an interdigitated back contact (IBC) structure to minimize voltage losses within the photoelectrode and wraps the electrode in nickel foil and glass layers to protect it from the electrolyte, ensuring long-term stability.

 

The submerged structure of the silicon photoelectrode provides a self-cooling effect, demonstrating superior efficiency and stability compared to external coupling structures, where the battery generating electricity through water decomposition and the electrolyzer producing H2 are separate entities.

 

Professor Jang stated,

This technology achieves an H2 production rate from solar energy that is four times higher than the commercialization standard set by the U.S.

 

“Department of Energy, playing a crucial role in enhancing the economic viability of solar H2 and ensuring competitive pricing against fossil fuel-based H2.”

 

Source:  Hydrogencentral

Posted by Morning lark
, |

住友ゴム工業は、白河工場(福島県白河市)で2025年4月に稼働を開始した水素製造装置「やまなしモデルP2Gシステム(500kWワンパッケージモデル)」の見学会を行った。

 住友ゴム工業(以下、住友ゴム)は2025年4月15日、白河工場(福島県白河市)で「タイヤ工場における水素製造装置のお披露目会」を開催した。当日は同工場で同月に稼働を開始した水素製造装置「やまなしモデルP2Gシステム(500kWワンパッケージモデル)」を紹介した後、同システムの見学会を行った。

年間約1000トンのCO2排出量削減

 やまなしモデルP2Gシステムは、山梨県が中心となって開発を進めてきたエネルギーシステムで、1時間当たり120m3の水素を製造できる。同システムは、太陽光発電などの再生可能エネルギーを活用して水を電気分解することで、環境負荷が少ないグリーン水素を製造する。

「やまなしモデルP2Gシステム」の水電解装置[クリックで拡大]

 住友ゴムは、新エネルギー・産業技術総合開発機構(NEDO)から助成を受け同システムの開発を統括してきた山梨県との合意の下、同システムを白河工場に導入して活用を進める。白河工場では、やまなしモデルP2Gシステムを24時間稼働させることで年間最大約100トン(t)の水素製造が可能となり、輸送を含むサプライチェーン全体(Scope1、2、3)で年間約1000tのCO2排出量削減につながる見込みだ。

 Scope1は燃料の使用や工業プロセスでの直接排出の温室効果ガス(GHG)排出量で、Scope2は他社から供給された電気、熱、蒸気の使用に伴うGHGの間接排出量、Scope3はScope1、2を除く事業者の活動に関連する他社のGHG排出量を指す。

 やまなしモデルP2Gシステムで製造されたグリーン水素は、従来の配達水素、系統電力、場内太陽光発電、既存燃料とともに白河工場における5つのエネルギー源の1つとして活用される。

 今後、白河工場では、系統電力から供給された再エネ由来の電力や場内の太陽光発電設備が生産した余剰電力を用いて、やまなしモデルP2Gシステムでグリーン水素を製造する。この水素と協力会社から配達された水素を、場内の水素ボイラーで燃焼させる。これにより生じた熱エネルギーを高精度メタルコア製造システム「NEO-T01」などのタイヤ加硫工程で使用する。既存燃料である天然ガスで生産した熱エネルギーも加硫工程では利用するが、段階的にグリーン水素由来の熱エネルギーのみの使用にシフトしていく。

水素ボイラー(左)と「やまなしモデルP2Gシステム」(右)[クリックで拡大] 出所:住友ゴム
「NEO-T01」の概要[クリックで拡大]

 これまでは主に協力会社から配達された水素やグリーン水素を水素ボイラーで燃焼していたため白河工場に1日1台の頻度で水素トレーラーがこれらの水素を運んできていた。やまなしモデルP2Gシステムの稼働により同工場内で水素を製造できるようになったことで水素トレーラーによる水素の運搬は5日に1回の頻度となる見込みだ。

白河工場の敷地内に駐車された水素トレーラーの荷室部[クリックで拡大]
住友ゴム 代表取締役社長の山本悟氏[クリックで拡大]

 住友ゴム 代表取締役社長の山本悟氏は「2025~2035年を対象とした長期経営戦略『R.I.S.E. 2035』を策定した。この戦略に基づき、ゴムから生み出す新たな体験価値を全ての人に提供し続けることを目指している。そしてこれからも水素を『つくる』『つかう』の二刀流で、持続可能な社会の実現に貢献する」とあいさつした。

 住友ゴムでは白河工場を「脱炭素グランドマスター工場」と位置付けている。同社は、やまなしモデルP2Gシステムを用いてグリーン水素を活用したタイヤ製造のノウハウを蓄積しながら、将来は国内外の他工場への展開も視野に入れている。2025年3月には中部圏水素・アンモニア社会実装推進会議と、「水素およびアンモニア等のサプライチェーン構築に向けた相互協力に関する基本合意書」を締結した。この合意書に基づき、中部圏での水素活用を検討する。

今後の水素エネルギー活用の取り組み[クリックで拡大] 出所:住友ゴム
 

住友ゴムにおける水素活用の経緯

 住友ゴムは、2021年にサステナビリティ長期方針「はずみ未来チャレンジ2050」を策定し、持続可能な社会の実現に向けた取り組みをグループ全体で進めている。はずみ未来チャレンジ2050とR.I.S.E. 2035で設定している7つの重要課題(マテリアリティー)のうち「気候変動」では、「CO2排出量の削減を推進する企業」をありたい姿に掲げ、2050年のカーボンニュートラル達成を目指す。この目標に向けた取り組みの一環として、水素の活用に挑戦することを決定した。

R.I.S.E. 2035で設定された7つのマテリアリティー[クリックで拡大]

 同社はNEDOおよび福島県から支援を受け、2021年8月~2024年3月に白河工場で水素を活用したタイヤ製造の実証実験を行った。実証実験では、福島県内の水素製造拠点から供給される水素を活用し、水素ボイラーで発生させた高温/高圧の蒸気を、タイヤ製造の最終段階である加硫工程で活用。加硫工程は、加熱と加圧によりゴムに弾性を与え、タイヤとしての形状と性能を完成させる重要なプロセスだ。

 2023年1月には、水素エネルギーと太陽光発電を組み合わせることで、製造時(Scope1、2)におけるカーボンニュートラルを達成したタイヤの量産を開始している。

 これらの成果を含む実証実験の結果を踏まえ、同社は2024年5月に、山梨県と「グリーン水素の活用による脱炭素化に係る基本合意書」を締結し、白河工場へのやまなしモデルP2Gシステムの導入を決定した。

これまでの水素エネルギー活用の取り組み[クリックで拡大] 出所:住友ゴム
今回の水素エネルギー活用の取り組み[クリックで拡大] 出所:住友ゴム
Posted by Morning lark
, |