블로그 이미지
Morning lark

카테고리

분류 전체보기 (1770)
Fuel Cell (835)
New Energy (811)
Energy Storage (6)
New Biz Item (2)
Total
Today
Yesterday

Model suggests Earth’s subsurface may hold up to 5.6 × 10⁶ million metric tons of natural hydrogen

 

A pair of geologists with the U.S. Geological Survey, Denver, has created a model that shows Earth’s subsurface may hold up to 5.6 × 106 million metric tons of natural hydrogen. In their study, published in the journal Science Advances, Geoffrey Ellis and Sarah Gelman added factors to a geological model to produce estimates regarding the likely amount of hydrogen in parts of the Earth

Prior research has shown that hydrogen can be produced artificially by applying electricity to water molecules to break them apart, leaving oxygen and hydrogen. Hydrogen is also produced naturally, via chemical reactions between rocks when they come into contact with one another. But until relatively recently, it was thought that very little hydrogen was made this way.

When geologists found huge natural reservoirs of hydrogen gas in Albania and West Africa, that thinking changed. Now, researchers believe that there are huge stores of hydrogen below our feet—the question remains, however, how to find it.

In this new study, the researchers made estimates regarding the likely amount of hydrogen contained in rocks and reservoirs in the Earth’s subsurface, which is loosely defined as the stratum.

To make their estimates, they used a model that has been created over time by geologists who have been adding hydrogen characteristics, such as where it has been found thus far and in what quantities, and the rates at which it is known to be produced by natural processes. They then began adding other known factors, such as the amount of hydrogen in reservoirs and how much is leaking out from hydrogen-containing rocks.

The model showed there to be anywhere between 1 billion and 10 trillion tons of hydrogen in the subsurface—the researchers used averages to narrow the number down to 5.6 × 106 million metric tons. They readily acknowledge, however, that most of that hydrogen is probably inaccessible, but they also point out that harvesting just 2% of it could provide all of humanity’s energy needs for approximately two centuries.

 

Model suggests Earth's subsurface may hold up to 5.6 × 10⁶ million metric tons of natural hydrogen - Hydrogen Central

 

Model suggests Earth's subsurface may hold up to 5.6 × 10⁶ million metric tons of natural hydrogen - Hydrogen Central

Model suggests Earth's subsurface may hold up to 5.6 × 10⁶ million metric tons of natural hydrogenA pair of geologists

hydrogen-central.com

 

 
Posted by Morning lark
, |

기존 촉매 대비 3배 효율적, 10시간 성능 유지 가능

[수소뉴스 = 양인범 기자] 부산대학교 연구진이 물에서 수소를 뽑아내는 수전해 기술과 수소 연료전지에 사용하는 새로운 촉매를 개발했다. 지금까지 촉매로 쓰여 온 비싼 백금에 저렴한 니켈을 섞은 나노 크기 입자를 그래핀에 결합한 것으로, 기존 촉매보다 최대 3배나 효율적이면서도 10시간 이상 성능을 유지해 차세대 에너지 기술의 혁신이 기대된다.

부산대학교는 재료공학부 이정우 교수팀이 백금 기반 합금의 정밀한 조성 변화를 통한 격자 수축 제어와 나노합금 입자-그래핀 이종원소 결합을 통해 높은 전류 밀도를 갖는 수전해 및 수소 연료전지용 촉매 개발에 성공했다고 6일 밝혔다.

수소 에너지는 높은 질량당 에너지 밀도와 연소 시 이산화탄소 미발생과 같은 특성으로 차세대 신재생 에너지로 주목받고 있다.

이 중 수전해 및 연료전지 기술은 탄소 기반의 물질이 사용되지 않으면서 수소 에너지를 생산하고 활용할 수 있는 기술로, 많은 연구가 이뤄지고 있다. 현재는 백금(Pt) 나노 입자가 담지된 비정질 탄소 재료인 백금·카본 블랙을 상용 촉매로 활용하고 있다.

하지만 백금·카본 블랙은 백금의 비싼 가격과 적은 매장량 및 카본 블랙의 낮은 장기 안정성으로 인해 대량 생산과 상용화 측면에서 어려움을 겪고 있다.이에 부산대 이 교수팀은 백금의 사용량을 저감하면서 동시에 촉매의 활성과 내구성을 향상시키기 위한 연구를 진행했다.

니켈(Ni)은 전이금속 중 하나로, 백금 가격의 약 1/2000 정도이며 백금과 혼합해 합금 형태로 제작 때 수소 생산과 산소 환원에서의 시너지를 일으켜 보다 높은 촉매 특성을 보여주는 것으로 알려져 있다.

연구진이 개발한 소재는 마이크로파를 활용한 용액상 공정으로, 수 나노 크기의 균일한 백금-니켈 나노합금 입자를 질소 도핑된 그래핀의 표면에 담지하는 방식으로 제작됐다. 이는 수 분 내에 수 나노 크기의 균일한 소재 제작이 가능해 공정 과정에서 소요되는 시간과 비용을 절약할 수 있다는 장점이 있다.

제작된 촉매는 최적화된 백금-니켈 조성을 갖는 합금 클러스터와 질소 도핑된 그래핀 간의 시너지로 인해 기존에 사용되는 백금·카본 블랙 소재보다 산소 환원 반응에서 약 3배 이상 향상된 비면적 활성도 및 질량 활성도를 보였으며, 수소 생산 반응에선 약 2배 정도 향상된 비면적 활성도, 질량 활성도를 나타냈다.

최종 구현된 촉매는 아연-공기 2차 전지에 적용됐다. 기존 상용 백금 및 이리듐 촉매보다 약 2배 이상 높은 전력 밀도를 나타냈다. 10시간 이상 충·방전 시에도 초기의 활성을 유지했다.

또 연구팀은 촉매 표면에서 생산된 수소를 포집해 시간에 따른 부피 변화를 관찰했으며, 일정 시간마다 포집된 수소의 양이 선형적으로 증가해 안정적으로 수소 생산이 가능하다는 것을 확인했다.

이런 결과들을 바탕으로 제작된 촉매는 차세대 에너지 생산 및 활용 소재로서 수소 자동차, 버스 등의 모빌리티나 발전 시스템 등 다양한 분야에 적용될 수 있을 것으로 전망된다.

이 교수는 “이번 연구 결과는 마이크로파 가열을 통한 고속 합성 공정과 백금-니켈 조성 변화를 통해 격자 수축 정도를 제어하고 나노합금 클러스터-질소 결합 형성으로 기존의 백금 촉매보다 높은 촉매 활성을 달성했다는 데 의미가 있다”며 “빠르고 간단한 촉매 제작 공정과 더불어 백금 사용량을 줄이면서 동시에 촉매의 활성과 내구성을 향상시킬 수 있기 때문에 앞으로 많은 활용이 기대된다”고 말했다.

이 논문은 세계적인 과학저널 ‘에코맷 (EcoMat)’ 2024년 12월 15일자에 게재됐다. 연구의 우수성을 인정받아 표지 논문으로 선정됐다.

부산대, 수전해와 수소연료전지 사용하는 新 촉매 개발 < 실시간 기사 < 종합 < 뉴스 < 기사본문 - 수소뉴스
출처 : 수소뉴스(http://www.h2news.co.kr)

 

부산대, 수전해와 수소연료전지 사용하는 新 촉매 개발 - 수소뉴스

[수소뉴스 = 양인범 기자] 부산대학교 연구진이 물에서 수소를 뽑아내는 수전해 기술과 수소 연료전지에 사용하는 새로운 촉매를 개발했다. 지금까지 촉매로 쓰여 온 비싼 백금에 저렴한 니켈을

www.h2news.co.kr

 

Posted by Morning lark
, |

AGCは2024年12月24日、カナダの気候変動関連スタートアップ企業であるCERT systems(サート システムズ)と、電気分解技術やCO2を原料に活用したエチレンの製造検討に関する共同研究契約を締結したと発表した。

 今回の共同研究では、CCU(CO2回収利用)技術の導入により、AGCグループが製造する塩化ビニール樹脂やフッ素樹脂の原料に使用するエチレンを、CO2由来のエチレンに置き換える検討を行う。

AGC製品の原料をCO2由来エチレンに置き換える共同研究のイメージ図[クリックで拡大] 出所:AGC

CO2電気分解プラントの実用化に向けた検討を実施

 近年、2050年までのカーボンニュートラルの実現に向けた技術として、CO2を回収/利用するCCU技術が注目されている。CO2由来のエチレンを製造する際の主な反応方法としては、水素を利用した反応、電気分解による反応、光合成を利用した反応の3つが検討されている。

 特に今回の検討の対象である電気分解法は、CO2以外に必要となる原料が電気と水で、原料の調達利便性が高いことを背景に、国内外で研究が進められている。電気は再生可能エネルギー由来のものを調達することで、カーボンニュートラル実現にも寄与する。

 CERT systemsは、2020年に世界で初めてCO2電気分解技術を用いてエチレンを製造するパイロット実証実験に成功したと発表した。今回の共同研究では、CERT systemsの知見を生かして、CO2電気分解プラントの実用化に向けた検討を実施する。同技術に関するプロセスの検証や事業性評価などを、AGCグループの製造拠点と連携し、進めていく予定だ。

 

AGCがCO2を原料としたエチレンの製造検討を開始:脱炭素 - MONOist

 

https://monoist.itmedia.co.jp/mn/articles/2412/27/news065.html

 

monoist.itmedia.co.jp

 

Posted by Morning lark
, |

Megawatt-Class PEM Electrolyzer-BriLyzer®-R200 Gen 2 of BriHyNergy Achieves Successful Operation

On December 29, 2024, BriHyNergy (Shenzhen) Co., Ltd.  (hereinafter referred to as ” BriHyNergy “) successfully put into operation its new generation megawatt-scale electrolyzer, BriLyzer®-R200 Gen 2. This marks a significant upgrade from the BriLyzer®-R200 Gen 1, which was unveiled at the Foshan Hydrogen Energy Exhibition on November 7, 2023.

The 200standard cubic meters PEM electrolyzer independently researched and developed by BriHyNergy has a rated hydrogen production capacity of 200 standard cubic meters/hour in a single tank. The electrolyzer can operate stably within a wide power input range of 5%-125% to directly produce 3.5MPa high-pressure hydrogen, realizing minute-level start-stop and second-level dynamic response, which is highly adapted to the fluctuating nature of wind power, and is suitable for large-scale PEM electrolysis of water for hydrogen production.

The BriLyzer®-R200 Gen 2 employs a flexible and scalable automated PEM electrolyzer stacking platform (R Platform), capable of expanding unit hydrogen production capacity of 600 standard cubic meters per hour. Thanks to the application of BriPEM® dual-enhanced proton exchange membranes, multi-level self-sealing technology, highly consistent stacking process, and other technological innovations and process optimizations, the BriLyzer®-R200 Gen 2 achieves a significant reduction in energy consumption compared to the first-generation electrolyzer. At a current density of 2.5 A/cm², the rated energy consumption reaches 4.2 kWh/Nm³ H₂. Additionally, the BriLyzer®-R200 Gen 2 can stably produce hydrogen at a pressure of 3-4 MPa and withstand a peak pressure drop of up to 5 MPa, representing an improvement of over 40% compared to the industry average. By directly producing high-pressure hydrogen through the BriLyzer®-R200 Gen 2 electrolyzer, saving the cost of downstream hydrogen compression, which leads to an overall reduction in the investment cost of hydrogen storage and transportation.

The fully independently developed and produced BriPEM® dual-enhanced proton exchange membranes plays a key role in the successful operation of BriLyzer®-R200 Gen 2. The BriPEM® dual-enhanced PEM employ perfluorosulfonic acid resin as the solid electrolyte, offering excellent chemical stability and high proton conductivity. On the physical reinforcement level, the addition of a high-strength polymer reinforcement layer enhances the compressive strength of the membrane, improving its mechanical strength and dimensional stability. Simultaneously, on the chemical level, BriHyNergy ‘s proprietary dehydrogenation technology significantly reduces the hydrogen content in oxygen, ensuring the safety of the electrolyzer. Moreover, the unique scavenger employed can mitigate membrane aging, extending its service life. As core materials and components in PEM water electrolysis, proton exchange membranes and membrane electrode assemblies have high technical barriers, not only determining the performance of PEM electrolyzers but also influencing their cost. As the first domestically mass-produced dual-enhanced proton exchange membrane, BriPEM® dual-enhanced proton exchange membranes already commenced mass production and delivery in 2023, aiming to address the “bottleneck” issue of domestic supply of core materials for PEM water electrolysis.  

BriHyNergy’s BriLyzer®-R200 Gen 2 has recently successfully obtained the EU CE certification. This certification marks both the recognition of BriHyNergy’s technological prowess and an authoritative endorsement of its product quality and safety. Renowned for its stringent standards and comprehensive testing procedures, the EU CE certification signifies that BriHyNergy’s MW-class PEM electrolyzer has reached international advanced levels in terms of design, manufacturing, performance, safety, and reliability. The acquisition of this CE “passport” for the European market has significantly enhanced the competitive advantage of BriHyNergy’s large-scale PEM electrolyzers in the global market, enabling the company to provide customers with more efficient, safer, and more reliable PEM hydrogen production products.

BriHyNergy is committed to developing PEM electrolyzers with higher efficiency, lower energy consumption, and greater reliability and durability in the future and will aim to accelerate the global adoption of green hydrogen technology and contribute to building a greener and cleaner world.

Megawatt-Class PEM Electrolyzer-BriLyzer®-R200 Gen 2 of BriHyNergy Achieves Successful Operation - Hydrogen Central

 

Megawatt-Class PEM Electrolyzer-BriLyzer®-R200 Gen 2 of BriHyNergy Achieves Successful Operation - Hydrogen Central

Megawatt-Class PEM Electrolyzer-BriLyzer®-R200 Gen 2 of BriHyNergy Achieves Successful Operation On December 29, 2024

hydrogen-central.com

 

Posted by Morning lark
, |

Sinopec has completed China’s first factory-based seawater hydrogen production research project at its Qingdao Refinery. The project integrates direct seawater electrolysis with renewable energy-powered green hydrogen production, achieving an hourly output of 20 cubic meters of green hydrogen.

 

This innovative approach not only offers a new solution for coastal regions to utilize renewable energy for green hydrogen production but also provides an alternative pathway for the utilization of high-salinity industrial wastewater.

 

The project adopts a factory-based operation model, leveraging a portion of the green electricity generated by Qingdao Refinery’s floating photovoltaic power station. Through electrolysis, seawater is split into hydrogen and oxygen, with the produced hydrogen seamlessly integrated into the Qingdao Refinery’s pipeline network for use in refining processes or hydrogen-powered vehicles. The entire production process occurs within a factory setting, ensuring efficiency and operational stability.

 

Seawater hydrogen production holds significant potential. By directly converting seawater into hydrogen, renewable energy can be transformed into green hydrogen, which is relatively easier to store and utilize. Moreover, this process conserves precious freshwater resources, offering a new pathway for the development of the hydrogen energy industry.

 

Despite its advantages, seawater hydrogen production comes with challenges. Seawater contains approximately 3% salt, and impurities, such as chloride ions, can corrode electrolytic electrodes, while cationic deposits may clog equipment channels, reducing efficiency and causing damage. Sinopec Qingdao Refinery, in collaboration with the Dalian Institute of Petroleum and Petrochemicals, has successfully overcome these challenges through a series of specialized equipment innovations and unique process designs, including chlorine-resistant electrode technology, high-performance electrode plate design, and a seawater circulation system. These advancements enable seamless integration of research findings into practical applications.

 

 Source:  Hydrogentechworld

Posted by Morning lark
, |