블로그 이미지
Morning lark

카테고리

분류 전체보기 (1323)
Fuel Cell (766)
New Energy (490)
Energy Storage (5)
New Biz Item (1)
Total
Today
Yesterday

달력

« » 2024.5
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

공지사항

최근에 올라온 글

 

 

The companies that are defining the mobility of the future must respond quickly to changing conditions. This is the only way to bring new technologies to economic viability and series production internal structures and bundling the expertise of various development fields in one fuel cell project house. Mahle, the international development partner and supplier to the automotive industry, is doing just that.

The importance of an overall system perspective for the safety and competitiveness of fuel cell vehicles can be illustrated by simulating the dynamics of fuel cells in interplay with battery size or by the reciprocal development of ion exchangers and heat exchangers. The air pathway, also known as the cathode air system, is one of the central systems in the periphery of the fuel cell. The relationships and interactions are complex and can only be predicted through elaborate simulations.

The team at the fuel cell project house analyses the results and defines the design of the peripheral components, which leads to a cost-optimized vehicle.

Sum of all parts
Mahle says it is transferring expertise from a wide variety of research and development areas of conventional mobility to the fuel cell project house, enabling thermal, air, and liquid management and filtration to work together purposefully.

Another example of close interaction among various development centres is the joint development of heat exchangers and ion exchangers. This is where Mahle's technical expertise in the areas of thermal management and filtration comes together. The coolant used to cool fuel cell stacks must be deionized so that it loses its electrical conductivity. If it were conductive, then not only could explosive gas form, but undesired and dangerous currents could be discharged.

The de-ionised cooling medium flows through the bipolar plates of the fuel cell to cool it. The de-ionised cooling medium is highly reactive, however, and corrodes components that come into contact with it, so this must be avoided. For this reason, Mahle says it passivates the heat exchanger and makes it resistant to leaching ions. This produces a durable cooling system and reduces the load on the ion exchanger, ensuring high-voltage safety under all conditions.

The exhaust air pathway in the fuel cell vehicle also requires extensive expertise. An intelligent system for water disposal ensures that water disposal occurs only at high speeds. This prevents water from freezing in awkward locations, such as in parking garages or inner cities. The water that is discharged at high speeds is atomised.

 

 

MAHLE Industrial Applications | MAHLE makes fuel cells mobile

 

MAHLE Industrial Applications | MAHLE makes fuel cells mobile

MAHLE bundles fuel cell expertise in agile structureFuel cell project house acts as a central contact point across all systems related to fuel cells The importance of an overall system perspective for the safety and competitiveness of fuel cell vehicles ca

www.thermalsystems-services.mahle.com

 

Posted by Morning lark
, |

自動車排ガス浄化触媒や、電動自動車用電極触媒の開発・生産を手掛けるキャタラー(静岡県掛川市)は、トヨタ自動車の燃料電池車 新型「MIRAI(ミライ)」に採用された電極触媒の量産を開始した。  燃料電池車は、水素と酸素の科学反応で電気を発生させ、モーターを動かして走る自動車だ。排出されるのは水だけで「究極のエコカー」といわれる。トヨタは2014年に世界で初めて一般向けの燃料電池車「MIRAI」を発売。2020年12月に2代目となる新型を投入した。  キャタラーによると、新型「MIRAI」の燃料電池について、触媒層で水素と酸素の反応を促進させる材料である「電極触媒」をキャタラーとトヨタが共同開発。従来の電極触媒と比べ触媒性能を大幅に向上させ、燃料電池車のコスト低減ができることが特徴だとしている。キャタラーは初代「MIRAI」にも電極触媒を提供、新型では高性能に機能アップしたという。

 

キャタラーが燃料電池車で使用する電極触媒の量産開始 トヨタの新型「MIRAI」に採用、コスト低減図る(オーヴォ) - Yahoo!ニュース

Posted by Morning lark
, |