블로그 이미지
Morning lark

카테고리

분류 전체보기 (1323)
Fuel Cell (766)
New Energy (490)
Energy Storage (5)
New Biz Item (1)
Total
Today
Yesterday

자료출처 ESG경제

일 자 2024.4.25

업계 "천연가스보다 수소 가격이 4~10배 비싸...비용 절감 없이 신규 수요 창출 어려워"
EU, '30년까지 재생가능 수소 1000만톤 자체 생산 야심찬 목표

사진=에퀴노르 공식홈페이지

[ESG경제신문=김연지 기자] 유럽 에너지 기업 임원들은 정부가 화석 연료에서 청정 연료로 전환하기 위해 에너지 기업에 재생 가능 수소 생산을 위한 보조금 지급과 규제 완화에 나서야 한다고 말했다.

로이터 통신에 따르면 노르웨이의 에퀴노르(Equinor)와 독일의 유니퍼(Uniper) 등 유럽의 주요 에너지기업 임원들이 지난 24일 개최된 유럽 천연가스 및 LNG 컨퍼런스에서 정부 지원 없이는 천연가스보다 4~10배 더 비싼 수소 생산 임무를 기업들이 수행하기 어렵다고 입을 모아 말했다.

유럽연합(EU)은 2030년까지 탄소 배출량을 줄이기 위해 1000만 톤의 재생가능한 수소를 생산하고 1000만 톤을 수입하는 것을 목표로 하고 있다.

에퀴노르의 가스 및 전력 부문 수석 부사장 엘거 하우겐(Helge Haugane)은 이날 컨퍼런스에서 “블루수소만 해도 휘발유보다 가격이 더 비싸질 텐데…그린수소로 가면 더 비싸질 것"이라며 “우리 기업들이 이 문제를 해결하기 위해 표적화된 보조금과 지원이 필요하다고 주장하는 이유”라고 말했다.

유니퍼의 최고 상업 책임자(CCO) 카스턴 파핑가(Carsten Poppinga) 역시 "현재로서는 시장이 이 에너지 전환에 비용을 지불할 수 없다"며 “수소는 천연 가스보다 4~10배 더 비싼 에너지원인데 시장이 이 비용을 스스로 제공할리 없다"며 정부 보조금의 필요성을 강조했다.

로이터는 “수소가 상업화 규모로 전환되기 위해서는 상당한 신규 수요가 필요하며 이는 인프라 투자를 통한 비용 절감을 통해서만 이뤄질 수 있다”고 설명했다. 현재까지는 EU는 수소에 대한 보조금 지원이나 인프라 투자에 대한 계획을 내놓은 바 없다.

 
Posted by Morning lark
, |

Hydrogen Production Methods Cost, Efficiency and Limitation

✅ In this post, I will provide an overview of the approximate costs of various hydrogen production methods.

🟦 Hydrogen Production:
1- Water Electrolysis including Alkaline, Proton Exchange Membrane (PEM), Anion exchange membrane (AEM), Solid Oxide Electrolysis Cell (SOEC) and capillary-fed electrolysis (CFE) electrolyzers.
The production of hydrogen through water electrolysis involves a higher initial investment.

Energy Efficiency = 55−80 %
Hydrogen yield = 111 g/kg feedstock
Cost = 4.15−10.30 $/kg of H2


2- Water thermolysis
In this method, a separation step is required to prevent recombination in an explosive mixture.
Energy Efficiency = 20−50 %
Hydrogen yield = 111 g/kg feedstock
Cost = 7.98−8.40 $/kg of H2

3- Water photoelectrolysis
The drawbacks of this method are low efficiency and the requirement of a significant surface area.

Energy Efficiency = 0.06−14 %
Hydrogen yield = 111 g/kg feedstock
Cost = 4.98−10.36 $/kg of H2 4- Water biophotolysis
Energy Efficiency = 10-15 %
Hydrogen yield = 111 g/kg feedstock
Cost = 1.42-2.13 $/kg of H2

5- Biomass dark fermentation
Energy Efficiency = 60-80 %
Hydrogen yield = 4-44 g/kg feedstock
Cost = 1.68−2.57 $/kg of H2

6- Biomass photofermentation
Energy Efficiency = 0.1−12 %
Hydrogen yield = 9-49 g/kg feedstock
Cost = 2.57-2.83 $/kg of H2

7- Biomass pyrolysis
Energy Efficiency = 35−50 %  
Hydrogen yield = 25-65 g/kg feedstock
Cost = 1.59−2.20 $/kg of H2

8- Biomass gasification
Energy Efficiency = 30−60 %  
Hydrogen yield = 40-190 g/kg feedstock
Cost = 1.77-2.05 $/kg of H2

9- Biomass hydrothermal liquefaction
Energy Efficiency = 85-90 %  
Hydrogen yield = 0.3-2 g/kg feedstock
Cost = 0.54−1.26 $/kg of H2 10- Biomass steam reforming
Energy Efficiency = 74−85 %  
Hydrogen yield = 40-130 g/kg feedstock
Cost = 1.83−2.35 $/kg of H2

11- Natural Gas (NG) Steam Methane Reforming with 0% CO2 Capture
Hydrogen Production Capacity= 483,000 kg/day
Levelized Cost of Hydrogen= $1.06/kg

12- NG Steam Methane Reforming with 96.2% CO2 Capture
Hydrogen Production Capacity= 483,000 kg/day
Levelized Cost of Hydrogen= $1.54/kg 13- NG Autothermal Reforming with 94.5% CO2 Capture
Hydrogen Production Capacity= 660,000 kg/day
Levelized Cost of Hydrogen= $1.51/kg 14- Gasification, Illinois No. 6 Coal, Shell/Air Products-type oxygen-blown, 0% CO2 Capture
Hydrogen Production Capacity= 660,000 kg/day
Levelized Cost of Hydrogen= $2.58/kg

15- Gasification, Illinois No. 6 Coal, Shell/Air Products-type oxygen-blown, 92.5% CO2 Capture
Hydrogen Production Capacity= 660,000 kg/day
Levelized Cost of Hydrogen= $2.92/kg 16- Gasification, Illinois No. 6 Coal/ Torrefied Woody Biomass, Shell/Air Products-type oxygen-blown, 92.6% CO2 Capture
Hydrogen Production Capacity= 133,000 kg/day
Levelized Cost of Hydrogen= $3.44/kg

✅ Source: See post image ✅ My posts reflect my knowledge, experience, and advice.

👇How can we lower the cost of hydrogen production?

Posted by Morning lark
, |

Consultant Capgemini asked more than 120 hydrogen businesses for their views, presenting their responses in a new whitepaper, alongside its own analysis

ANALYSIS | Clean hydrogen 'remains too expensive and uncompetitive' – how can costs be reduced? | Hydrogen news and intelligence (hydrogeninsight.com)

 

Posted by Morning lark
, |

National Petroleum Council calls for game-changing hydrogen tax credit to be extended to 20 years 

Official advisors to the US government have warned that under current policies, the price gap between polluting hydrogen and low-carbon equivalents in key sectors such as industry and transport is set to be “significant”, even in 2050.

The report, Harnessing Hydrogen: A Key Element of the U.S. Energy Future, was requested by US Energy Secretary Jennifer Granholm in November 2021, shortly after the Biden administration came to power.

Sent by the NPC to Granholm yesterday (Tuesday), it includes analysis showing that by mid-century it would still be around $1.50-2/kg more expensive to use green hydrogen in refining operations along the Gulf Coast compared to grey H2 made with unabated fossil gas, and around $0.50/kg more expensive to use blue hydrogen made with gas and carbon capture and storage (CCS).

And in the transport sector, the gap would be even more stark in 2050, with the cost of using grey H2 in heavy transport sitting at around $1.50-$4/kg, compared to around $6/kg for blue hydrogen and $8/kg for green.

The NPC tells Granholm that low-carbon hydrogen could ultimately achieve 8% of the US's emissions reductions, but that this would require scaling up the industry sevenfold by 2050. Current policies would achieve a scale-up of just twofold, it warned.

The effective deployment of low-carbon hydrogen in hard-to-abate sectors in certain areas of the US (for example, in refining and in exports on the Gulf Coast) had the potential to limit the overall national cost of reaching net zero by 2050 to 3% of GDP, it adds.

Failing to deploy low-carbon hydrogen where it is needed would add an additional 0.5-1% to that, the group says.

The US government should take action now to ensure the price gap is closed, by putting in place long-term incentives for both demand and supply, the NPC writes.

The extension of the 45V production tax credit to 20 years — just one measure proposed by the NPC in its vast report — would incentivise investment in low-carbon hydrogen production by aligning the subsidy more accurately with the 20-year investment lifecycle of infrastructure assets, the group says.

It also recommends a blurring of the emissions intensity bands (see panel) that govern which projects are eligible for the tax credit, so as to prevent a “cliff effect” — in which a facility with lower emissions than other projects in the same band is not rewarded for being more climate friendly, even if those reduced emissions mean its H2 is more expensive.

“The cliff effect or even concerns over the cliff effect, which arises due to the steep step changes in 45V between the different carbon intensity tiers, may negatively affect the bankability of a [low carbon] H2 project,” the report says.

Under current rules, blue hydrogen projects are unlikely to meet the minimum emissions intensity threshold to qualify for the tax credit, according to DOE analysis late last year.

On the demand side, the number-one priority for Congress should be implementing a national carbon price, phased in in stages, with an EU-style carbon border tax implemented on qualifying imports, says the report — in a “policy” chapter led by NPC member and oil giant BP, which has long advocated for an international carbon pricing mechanism.

“The United States does not have a federal policy in place that establishes an explicit price for greenhouse gas

“Given that such a carbon price may be politically challenging in the US any time in the foreseeable future, other demand-driving policy options should be considered,” the NPA says.

The DOE should also consider introducing emissions intensity standards for industrial and transport sectors — although it also recommends funding incentive schemes for these sectors via the proceeds from a carbon pricing mechanism.

Specifically, Congress and the Biden administration should implement a national, technology-neutral low-carbon well-to-wake intensity standard applied to industrial users of hydrogen, the NPC said, which may require sub-targets for various different sectors such as steel production, chemicals or refining.

For the transport sector, the NPC recommends that a similar standard applies on a well-to-wheel basis across the entire transport sector. This would entail a low-carbon fuels standard programme to drive down the carbon intensity of different drivetrain pathways such as liquid fuels, electricity and hydrogen.

In addition, it recommends well-to-wheel emissions standards to improve the carbon intensity of individual vehicle models.

emissions,” the report explains. “Such a policy would be instrumental in meeting the US long-term national decarbonisation goals, including supporting the growth of a LCI [low-carbon-intensity] H2 industry.

“A long-term, effective, durable, and transparent price on carbon could phase in as shorter-term low-carbon energy funding and tax incentives are phased out to enable a smoother and more efficient market transition. Explicit carbon pricing in the form of a carbon tax or a GHG [greenhouse gas] cap-and-trade program provide the most economically efficient climate policy.”

The carbon price mechanism, which could take the form of an emissions tax or a cap-and-trade-scheme should be phased in with the goal of eventually replacing the need for 45V tax credits, the NPC said.

However, carbon prices of $100-200 per tonne tonne would be needed to create the required incentives to close the price gap between grey and low-carbon hydrogen, a level that could present an insurmountable political hurdle, the authors admit.

However, both schemes should assess lifecycle emissions using the currently-proposed GREET model, which environmental groups such as Friends of the Earth have warned massively underestimates the impact of methane emissions.

In addition, the NPC gave no guidance on how any incentive schemes should be funded without the aid of a federal carbon credits market.

The NPC's role as an official industrial advisor to the US government is laid out in statute. Privately funded by its members, it counts both oil majors and smaller regional oil & gas producers among its base, as well as academics, researchers and non-governmental organisations.

The NPC was at pains to characterise the report as balanced, pointing out that 67% of the report’s participants were from the non-oil & gas segments of its membership. However, most major workgroups in the report (behind the individual chapters of the document) were led by oil & gas majors including Chevron, BP and ExxonMobil.(Copyright)  

 

Price gap between grey hydrogen and low-carbon H2 will still be 'significant' in 2050, warns US government advisors | Hydrogen news and intelligence (hydrogeninsight.com)

 

Price gap between grey hydrogen and low-carbon H2 will still be 'significant' in 2050, warns US government advisors

National Petroleum Council calls for game-changing hydrogen tax credit to be extended to 20 years

www.hydrogeninsight.com

 

Posted by Morning lark
, |

内航船や港湾内で働く船が脱炭素化へ動き始めた。総トン数20トン以上の船では国内初となる水素燃料電池船が運航を開始し、7月には世界初の商用アンモニア燃料船が就航する。水素とアンモニアは燃焼しても二酸化炭素(CO2)を排出せず、ゼロエミッションを実現できる。一般の人にも次世代船技術をアピールする場になりそうだ。(梶原洵子)

 

 

水素燃料電池を搭載した洋上風車作業船「HANARIA(ハナリア)」が10日に北九州市で就航した。同船は水素と酸素を反応させて発電する燃料電池を主電源とし、リチウムイオン電池(LiB)とバイオディーゼル発電機を補助電源とするユニークな構成だ。水素供給が途絶えても航行できる実用性の高い水素燃料電池船となっている。 同船は日本財団のゼロエミッション船プロジェクトの一環で、MOTENA―Sea(モテナシー、東京都千代田区)などが開発した。水素タンクはトヨタ自動車の技術協力を受けた。全長は約33メートル、総トン数は248トン。発電機を使わないモードでは「とても静かに航行できる」(プロジェクト関係者)。 モテナシーは同船を洋上風力発電施設への人員輸送に加え、クルーズ事業にも活用する。未来を担う子どもたちなどにも体験してもらいたい考えだ。 日本財団では2026年度に水素エンジン搭載船の実証を行う予定で、「日本の技術力で世界の船のゼロエミッション化をけん引したい」(海野光行常務理事)と意気込む。 日本郵船は、世界初の商用アンモニア燃料船となるタグボート「A―タグ」を7月に横浜港(横浜市中区)で就航する。港湾内で船舶の着岸・離岸の補助や救難などを行う。毒性があるアンモニアを扱うため、運航を担う新日本海洋社(同西区)の加藤毅社長は、「生命に関わることを肝に銘じて取り組む」と気を引き締める。 A―タグに続き、日本郵船は26年の完成を目指してアンモニア混焼エンジンを搭載した大型の外航船の開発を進めている。外航船には発電機としてA―タグのエンジンを複数台搭載する計画で、A―タグはアンモニア燃料や同エンジンの取り扱いを習熟する場としても期待される。 電気推進(EV)タンカーは水素燃料電池船などより一足早く、旭タンカー(東京都千代田区)の「あさひ」が22年に、「あかり」が23年に運航を始めた。湾内で船舶への燃料供給を行う。大容量のLiBを搭載し、推進だけでなく荷役や離着桟、停泊中の動力も全て電気でまかなう。 また、海外ではノルウェー海運大手のフッティルーテンが電気と風の力で動くクルーズ船「シーゼロ」の開発プロジェクトを進めている。主にノルウェー沿岸での運航を想定した船舶で、太陽光発電パネル付きの帆を持つ特徴的なデザインが提案されている。多様なゼロエミ船の開発が進むことで、一般の人からも認知され、普及につながることが期待される。

Posted by Morning lark
, |