블로그 이미지
Morning lark

카테고리

분류 전체보기 (1288)
Fuel Cell (764)
New Energy (468)
Energy Storage (5)
New Biz Item (1)
Total
Today
Yesterday
The need to transition away from fossil fuels has been pressing for some time, but the global energy crisis is a driver that will accelerate the role of hydrogen in energy security, as well as decarbonisation.

The most efficient low-carbon hydrogen production pathway varies according to the availability of renewable energy sources and the capability of the existing infrastructure around the world. In regions where there is limited availability of renewable energy, such as North West Europe, providing reliable green hydrogen at scale can be achieved by the use of imported renewables, as well as local electrolysis operated on renewable power when available.

There can be no doubt that hydrogen will play a crucial role in decarbonising energy supply to industry. It is already widely used as a process gas, from metal processing to chemical production and glass manufacturing. Attention must now turn to how hydrogen’s potential as a low-carbon energy source can be unlocked and how its ability to decarbonise many more hard to abate sectors can be utilised.

So far, progress has been made, but it also needs to be financially viable. Financial support for hydrogen must be technology agnostic. End users, i.e. industry, should decide on the most efficient production pathways to ensure the most appropriate infrastructure is built for their needs. This will avoid leaving the UK’s industry with inefficient infrastructure once subsidies stop. In short, narrow production pathways risk leaving UK industry with a higher cost base for hydrogen than countries who are technology agnostic. This would, in turn, weaken the UK’s position on an international market.

By combining domestically produced and imported renewable energy to produce green hydrogen, there is an opportunity to propel the international hydrogen economy forward and build a globally-viable market more quickly. To deliver, there are three core areas that require immediate attention: supply, infrastructure, and market support.

Energy security and the global market

Consider the UK market as an example. Meeting the UK’s net zero ambitions will mean relying on a secure and diverse energy mix, for which all technologies will need to play a role. Green hydrogen produced with renewable ammonia can support the UK to decarbonise, while local electrolyser capacity can be established in parallel. However, it is worth noting that local production of renewable energy will always bring challenges as the UK does not have an abundance of wind and solar. Hydrogen plays an important role, not just as a strategic clean energy reserve, but as a product to generate economic growth for the country. The Department for Energy Security and Net Zero said the UK needs to be noted as a ‘world leader’ in investigating the use of hydrogen for a range of functions.¹ Recognising the opportunity, the UK government has set accelerated ambitions to grow the hydrogen market, including by using imports. In its ‘Hydrogen Strategy Update’ in July 2023, it set out a commitment to define a hydrogen standard and create a certification scheme by 2025, to ensure that high quality hydrogen, whether imported or locally produced, meets the same high standards. The results of this consultation will undoubtedly unlock opportunities for the hydrogen economy to grow.

Reference

1https://www.gov.uk/government/publications/energy-security-bill-factsheets/energy-security-bill-factsheet-enabling-the-hydrogen-village-trial.

Written by Manish Patel, Air Products, UK.

This article was originally published in the Winter 2023 issue of Global Hydrogen Review magazine. To read the full article, simply follow this link.

Posted by Morning lark
, |

Shifting to mass production is key to producing competitive renewable hydrogen. Partnering with Air Liquide, Siemens Energy is scaling production of electrolyzers using standardization and automation aiming to cut the cost of renewable hydrogen down to size. It’s a development that sits at the heart of the energy transition.

Hydrogen has a key role to play on the road to net zero.

Acting as an energy vector, a storage medium, a raw material for synthetic liquid fuels, and as a gaseous fuel able to address emissions from some of the hardest to abate industrial sectors like steel, chemicals, heavy transport and power generation, hydrogen is vital. Unfortunately, so-called green hydrogen generated using renewable energy is currently too expensive to produce. For this reason, the hydrogen market today is dominated by steam reformation of natural gas, it’s essentially a fossil fuel. However, the imperative of climate change has been amplified by other factors such as security of energy supply concerns that have been greatly increased by the war in Ukraine, for example. This has emphasized the importance of developing a cost-effective renewable hydrogen industry and prompted an acceleration of the market.

Despite the growing interest in renewable hydrogen, the cost has remained an impediment to widespread adoption and displacement of the fossil-fuel derived hydrogen that dominates the current market. The joint venture between Siemens Energy and Air Liquide aims to producing industrial volumes of green hydrogen available bringing economies of scale through the mass production of electrolyzers. The move will not only secure access to electrolyzer capacity but crucially get them at the right price without compromising on safety, quality, and reliability.

Hydrogen Scaling production

Scaling renewable hydrogen production to industrial volumes starts with developing a supply chain that can meet global demand and deliver thousands of megawatts of electrolyzer capacity needed every year. By combining their expertise and efforts, Siemens Energy and Air Liquide intend to do just that with the launch of a gigawatt-scale factory in Berlin. The plant, which heavily relies on automation and robotics to produce electrolyzers in bulk, will initially produce 1 GW of Siemens Energy’s Silyzer 300 Proton Exchange Membrane (PEM) electrolyzer stacks annually. The PEM technology offers a high degree of efficiency and is ideally suited to the variable output that is typical of renewable energy resources. Furthermore, under current plans, this production capacity will increase by at least 1 GW per year, reaching a hefty 3 GW annually by 2025 with a potential for more. In a second step the electrolyzer arrays are being assembled locally, e.g. in the Siemens Energy manufacturing site Muelheim, or in external workshops in the Czech Republic or France or close to future project sites. 

Production at the Huttenstrasse facility, located in Berlin’s Moabit district, has just started. The site has so far been known particularly to produce hydrogen-capable gas turbines. The new production line occupies some 2000 m2. The joint venture expects several benefits, alongside the economies of scale that are translating into a reduction in costs, as has been previously witnessed with renewable energy technologies like wind and solar PV. For example, by partnering with Air Liquide – which is taking a 25.1% equity stake in the JV alongside Siemens Energy’s 74.9% – the gigawatt-scale factory already has a strong business case with a reliable partnership that secures sustained, competitive and reliable product off-take. Both partners able to meet electrolyzer demand arising from their individual portfolios of hydrogen projects.

In addition, in partnering with Air Liquide, Siemens Energy has a strong relationship with a company that has vast experience and deep knowledge of the processes to produce the hydrogen and oxygen, such as hydrogen liquefaction, methanol synthesis, ammonia synthesis, or ammonia cracking. 

It is key to long-term success that the Siemens Energy electrolyzer fits the needs of the downstream processes and can also be optimized to better meet those needs in the future. Air Liquide is already working with Siemens Energy electrolyzers deployed at its site in Oberhausen, Germany, in the flagship Trailblazer project. This allows both partners to gather detailed knowledge on how to integrate electrolyzers into an existing plant configuration and learn how to operate the system in combination with existing assets, such as compression and off-take. Sharing know-how, risks and opportunities, the partners aim to rapidly accelerate the transition to affordable renewable hydrogen.

One of the first projects to use stacks from the Berlin multi-gigawatt factory is Air Liquide’s Normand’Hy electrolyzer project. With a capacity of 200 MW, it is the one of the largest PEM electrolyzers currently under development.  This project will apply the learnings from Air Liquide’s Trailblazer project in Oberhausen. Other renewable and low-carbon hydrogen projects are also earmarked for development in the Netherlands and elsewhere using the Berlin-produced stacks.

Continuing to cut costs

Within the framework of the partnership, Air Liquide and Siemens Energy have also agreed to dedicate R&D resources to the development of the next generation of electrolyzer technologies. Further efficiency improvements are anticipated, especially given the progress to date.

Siemens Energy started developing hydrogen electrolyzer technology more than a decade ago with a small lab-scale PEM. A commercial product, the Silyzer 200, followed in 2015 with a rated capacity of around 1.25 MW. Although the Silyzer 200 represented a major jump in capacity it was still not suitable for large-scale hydrogen production. That changed with the launch of the Silyzer 300 which has more than 10 times the amount of hydrogen output than the 200 version. Indeed, the Silyzer portfolio scales up by factor 10 every four or five years and sees substantial improvements in efficiency with each generation.

Simultaneously, manufacturing processes have also evolved, from the hand-built Silyzer 100 and 200 to exploring the development of automated manufacturing equipment and implementation of larger scale machines with the launch of the 300. Siemens Energy is also developing manufacturing equipment together with external companies, removing manual processes and increasing automation. 

The focus in Berlin is mass production of the existing stacks and a huge step up in production volumes. Increasing production with a factor of 100, within four or five years is only possible in a fully automated large-scale mass production plant of the kind that is being developed in Berlin. Solid investment in manufacturing capacity is enabling the supply chain to invest in capacity growth with confidence too, ramping up from single piece production to mass production in line with stack manufacturing volumes. 

In order to cut the specific cost of hydrogen, while mass production of the stacks will take place in Berlin, assembly of the final product will take place closer to the project sites. The Silyzer product contains 24 PEM stacks but built around it are the various ancillaries that are needed for the stacks to operate. These items include the manifolds for the gas, the cooling system, the gas separation system, and the electrical connections among others. In Germany, this stage of assembly will take place at Mülheim but that will change depending on the location of the final project. For the Air Liquide Normand’Hy project, for example, Siemens Energy will work with a French company to produce the skid-mounted electrolyzer array. This approach of working with external partners close to where the final customers are based is key to match the market needs.      

   

Building a hydrogen ecosystem

Reasonably priced and affordable renewable hydrogen derived from renewables is a prerequisite for achieving net zero carbon. It is therefore key for our future. By moving into large-scale mass production, the Air Liquide-Siemens Energy partnership is taking a big step towards a cost-effectivehydrogen economy using automation  and standardization to build economies of scale. At the same time as volumes soar, demand for the electrolyzer business is also rapidly accelerating, rising from approximately 50 or 60 stacks five years ago and increasing by a factor of 10 this year and another factor of 5 to 10 anticipated over the next few years. By fostering a global ecosystem for electrolysis and hydrogen technology, the joint venture is engineering access to industrial volumes of cost-competitive renewable hydrogen. The challenge is global warming, part of the solution is a gigawatt-scale factory

 

https://www.hydrogenfuelnews.com/pump-up-the-volume-hydrogen-hits/8561607/?awt_a=1jpsU&awt_l=YbiARn&awt_m=i3Hef1tId85DlsU

 

Pump up the volume: Hydrogen hits the big time

Shifting to mass production is key to producing competitive renewable hydrogen. Partnering with Air Liquide, Siemens Energy is scaling production of electrolyze

www.hydrogenfuelnews.com

 

 

 

 

 

Posted by Morning lark
, |

燃料電池、太陽電池、蓄電池の3電池を連携・制御

 

パナソニック株式会社(以下、パナソニック)は、純水素型燃料電池と太陽電池を組み合わせた自家発電により、事業活動で消費するエネルギーを100%再生可能エネルギーで賄う「RE100ソリューション」実証施設「H2 KIBOU FIELD」を2022年4月15日より稼働します。本格的に水素※1を活用する工場のRE100化は、世界初※2の試みとなります。

今回、滋賀県草津拠点に5 kW純水素型燃料電池99台(495 kW)と太陽電池(約570 kW)を組み合わせた自家発電設備、そして余剰電力を蓄えるリチウムイオン蓄電池(約1.1 MWh)を備えた大規模な実証施設を設置しました。ここで発電した電力で草津拠点内にある燃料電池工場の製造部門の全使用電力を賄うとともに、3電池連携による最適な電力需給運用に関する技術開発および検証を行います。

この3電池を組み合わせることで、広大な設置面積が必要となり、かつ天候の影響を受けやすい太陽光発電の特性を補完し、例えば工場の屋上など限られたスペースでの自家発電設備の設置も可能になります。また、蓄電池との連携により、電力使用量がピークになった時でも燃料電池と蓄電池からの電力供給をコントロールすることで、必要な電力を自家発電設備で安定的に賄うことができます。
さらに、5 kWの純水素型燃料電池を複数台連携させることで、建屋・敷地に合わせたレイアウトで大電力化しながら、必要な電力量に応じて機器を発電させたり停止させたりする運用が可能になり、機器劣化を抑制し、生涯発電量を最大化させます。また、工場内の稼働を止めることなく、無停止でのメンテナンスも可能になります。

本実証を通じて純水素型燃料電池の運用を含めたエネルギーマネジメントに関するノウハウ・データの蓄積と実績構築を図り、自家発電により事業活動に必要な再エネ電力を賄う「RE100ソリューション」の事業化を目指します。

パナソニックは、カーボンニュートラル社会に向けてグループが掲げる長期環境ビジョン「Panasonic GREEN IMPACT」に基づき、再生可能エネルギーの導入拡大に向けて、水素※1の本格活用という新たな選択肢の提案を行い、脱炭素社会の実現に貢献していきます。

<特長>

1. 世界初※2水素を活用した工場の再生可能エネルギー100%化に向けた実証

2. 3電池連携のエネルギーマネジメントシステムで最適かつ安定した電力供給

3. 純水素型燃料電池の複数台設置と運転制御による長期運用、無停止メンテンナンス化

  • ※1. 環境価値証書の活用を含む再生可能エネルギーにて生成されたグリーン水素を活用することでRE100に対応可能、実証開始時は再エネ由来の水素を用いるものではありませんが、将来的には再エネ由来の水素を使用したRE100化を目指しています
  • ※2. 工場の稼働電力を賄う自家発電燃料として本格的に水素を活用した実証において(2022年3月31日現在、パナソニック調べ)

【お問い合わせ先】

エレクトリックワークス社 スマートエネルギーシステム事業部
電話:06-6908-1131(代表 受付 9:00~17:30)

【特長】

1. 世界初※2水素を活用した工場の再生可能エネルギー100%化に向けた実証

純水素型燃料電池と太陽電池を組み合わせた自家発電により、事業活動で消費するエネルギーを100%再生可能エネルギーで賄う「RE100ソリューション」実証施設「H2 KIBOU FIELD」を稼働。
発電した電力で草津拠点内にある燃料電池工場の製造部門の全使用電力を賄うとともに、3電池連携による最適な電力需給運用に関する技術開発および検証を行います。

2. 3電池連携のエネルギーマネジメントシステムで最適かつ安定した電力供給

3電池を連携させた当社独自開発のエネルギーマネジメントシステムにより、工場での電力需要データや気象予報データ(将来対応予定)、運転中の機器モニタリング情報を元に、電力需要に追随し、太陽電池の発電量の計測から発電パターンを計画します。また、純水素型燃料電池の発電量を計画的に運転調整をしたり、電力の余剰や不足に対し蓄電池を活用する等、最適かつ安定した電力供給を行います。

3. 純水素型燃料電池の複数台設置と運転制御による長期運用、無停止メンテンナンス化

純水素型燃料電池を複数台連携する際、1台ごとの発電時間の変化を予測シミュレーションし、機器ごとに稼働する時間をできる限り平準化し機器間の運用のバラツキを軽減させ、機器劣化を抑制します。
また、小型の5 kw純水素型燃料電池を複数台設置することにより、機器を1台ずつ発電させたり停止させたりする運用が可能になり、工場内の稼働を止めることなく、無停止でのメンテナンスも可能になります。

【実証概要】

工場使用電力の100%再エネ電力化を実現する手段として、純水素型燃料電池、太陽光発電、リチウムイオン蓄電池の3電池連携によるエネルギーマネジメントの実証を2022年4月15日より開始します。

実証に用いる当社製の純水素型燃料電池は、家庭用燃料電池コージェネレーションシステム「エネファーム」で培った技術を活用して開発したものです。
コンパクトな筐体で発電効率が高いことに加え、複数台の連携制御により需要に応じた発電出力のスケールアップが可能であるほか、屋上や地下室、狭小地など柔軟な設置に対応します。


純水素型燃料電池 連携制御イメージ

この特長を生かして、工場の屋上に発電設備を設置して運用することを想定し、モデル工場の当社燃料電池工場(滋賀県草津市)の建築面積を想定した敷地面積に設備を設置して、工場の使用電力を賄います。

実証施設

所在地発電出力蓄電容量施設面積
パナソニック株式会社 エレクトリックワークス社 草津拠点
滋賀県草津市野路東2丁目3番1-1号
約1.07 MW(純水素型燃料電池:495 kW、太陽光発電:約570 kW)
約1.1 MWh(リチウムイオン蓄電池)
約6,000 m2(約80 m×75 m)

モデル工場(燃料電池工場)

製造部門のピーク電力製造部門の年間電力量生産品目建築面積
約680 kW
約2.7 GWh
家庭用燃料電池「エネファーム」
約4,125 m2(約75×55 m)
  • ・太陽光発電はモデル工場屋上に敷き詰めることを想定して約4,000 m2(65 m×60 m)に設置

純水素型燃料電池(単体仕様)・2021年10月発売

発電出力定格発電効率本体サイズ重量出力方式
5 kW
56%(LHV)
834 mm(W)×417 mm(D)×1766 mm(H)
(デザインパネルを含む)
約205 kg(デザインパネルを含む)
モノジェネ式/コジェネ式

水素供給

方式タンク容積供給事業者
液化水素を貯蔵
約78,000 L
岩谷産業株式会社
  • ・岩谷産業株式会社が液化水素ローリーで実証施設まで運搬

■H2 KIBOU FIELD 空撮写真(2022年4月撮影)

以上

Posted by Morning lark
, |

Bloom Energy electrolyzer accelerates the future of hydrogen production in south Korea.

Bloom Energy (NYSE: BE) announced the first international deployment of its high temperature solid oxide electrolyzer.

The successful 130 kilowatt (kW) installation in Gumi, South Korea, further propels Bloom Energy’s efforts to enable a hydrogen-fueled economy following the commercial launch of the Bloom Electrolyzer in 2021.

Bloom’s high-temperature electrolyzer is operating at its designed high efficiency, producing hydrogen onsite more efficiently than low-temperature PEM and alkaline electrolyzers. Because it operates at high temperatures, the Bloom Electrolyzer requires less energy to split water molecules and produce hydrogen.

As electricity accounts for up to 80 percent of the cost of hydrogen from electrolysis, using less electricity increases the economics of hydrogen production and helps bolster adoption.

Fully operational at the Bloom SK Fuel Cell center in South Korea since January 2022, this new demonstration is testing electrolysis efficiency using water as an input in intermittency mode. The Bloom Electrolyzer is effectively and efficiently operating in daily cycles, demonstrating its ability to pair with intermittent renewables, such as solar and wind.

In production, the Bloom Electrolyzer is expected to operate at 46 kilowatt hours (kW-hr) per kilogram of hydrogen (kg H2) output with water as its input. When steam is used, the electrolyzer requires even less electricity, expected to operate at 40.4 kW-hr/kg H2, driving further efficiencies.

Deia Bayoumi, vice president, global product management, Bloom Energy, said:

The successful deployment of our electrolyzer internationally is a testament to the confidence it has garnered to create viable pathways to achieving a net-zero, hydrogen-fueled future.

“This marks a critical step in our mission to transform the global energy landscape and enable the hydrogen economy.”

The project aligns with South Korea’s efforts to decarbonize its energy system and become a global leader in the hydrogen economy in the coming decades. Investing heavily in new technologies and infrastructure to spur the production and adoption of the carbon-neutral fuel, South Korea aims to replace fossil fuels with hydrogen as its chief power source by 2050, according to the Ministry of Trade, Industry, and Energy.

With the capacity to scale hydrogen production rapidly, Bloom Energy and SK ecoplant are well-suited to drive South Korea’s energy transition forward.

Seoung-hwan Oh, vice president, hydrogen business, SK ecoplant, said:

A significant milestone in our successful partnership with Bloom Energy, this latest collaboration is a testament to our shared vision to transform South Korea’s energy landscape and unlock new value through innovation.

“Bloom Energy’s technology has demonstrated unparalleled performance and efficiency, further establishing us at the forefront of South Korea’s clean energy market.”

Highly flexible, the Bloom Electrolyzer offers unique advantages for deployment across a broad variety of hydrogen applications, using multiple energy sources including intermittent renewable energy and excess heat. Its modular design also makes it ideal for applications across gas, utilities, nuclear, wind, solar, ammonia and heavy industries. Thanks for staying up to date with Hydrogen Central.

For more information about the Bloom Electrolyzer and the company’s commitment to a zero-carbon future, visit: www.bloomenergy.com/bloomelectrolyzer.

About Bloom Energy

Bloom Energy empowers businesses and communities to responsibly take charge of their energy. The company’s leading solid oxide platform for distributed generation of electricity and hydrogen is changing the future of energy.

Fortune 100 companies around the world turn to Bloom Energy as a trusted partner to deliver lower carbon energy today and a net-zero future. For more information, visit www.bloomenergy.com.

Highlights:

  • Bloom Energy’s first international electrolyzer deployment showcases pathways to produce clean, low-cost hydrogen at scale to unlock South Korea’s net-zero future

READ the latest news shaping the hydrogen market at Hydrogen Central

Bloom Energy Electrolyzer Accelerates the Future of Hydrogen Production in South Korea, SAN JOSE, Calif., April 6, 2022 

Posted by Morning lark
, |

 パナソニックホールディングス(HD)は戦略投資として6000億円を投じ、中長期の成長に重点を移す。2022年度に持ち株会社制へ転換したのを機に、「2030年に向けた社会変革を考え競争力を獲得する、長期視点の経営に変える」(楠見雄規社長)とし、3年間の累積営業キャッシュフローを2兆円とする中期経営指標を設定した。事業会社に権限移譲する“自主責任経営”の追求は真の企業競争力強化につながるのか。  6000億円の戦略投資は22年度からの3年間で実施。グループ傘下の8事業会社による投資とは別枠とし、成長領域の3分野を中心に4000億円、技術基盤として2分野を中心に2000億円をそれぞれ割り当てる。  成長領域としては車載電池のほか、21年に買収した米ブルーヨンダーのサプライチェーンマネジメント(SCM)ソフトウエアの進化、コロナ禍で必要性が高まる空質空調領域を中心に投資。特に電池では和歌山工場(和歌山県紀の川市)に設ける電気自動車向け新型車載用リチウムイオン電池の高生産性ラインの実証を進めており、新セルを業界に先駆けて投入する方針だ。  技術基盤では水素製造の高効率化などを進める。エネルギーとしての水素製造・活用拡大に向け、純水素型燃料電池、太陽光発電、リチウムイオン蓄電池の3電池連携によるエネルギーマネジメントの実証実験を行う。  また自社バリューチェーン以外に、社会への貢献分も含めた二酸化炭素(CO2)削減量拡大も推進。排出量削減目標として50年までに、現時点の全世界CO2総排出量の約1%に相当する3億トン以上を掲げた。

 

 

電池・水素…パナソニックが6000億円投じる戦略投資の全容(ニュースイッチ) - Yahoo!ニュース

 

電池・水素…パナソニックが6000億円投じる戦略投資の全容(ニュースイッチ) - Yahoo!ニュース

 パナソニックホールディングス(HD)は戦略投資として6000億円を投じ、中長期の成長に重点を移す。2022年度に持ち株会社制へ転換したのを機に、「2030年に向けた社会変革を考え競争力を

news.yahoo.co.jp

 

Posted by Morning lark
, |