블로그 이미지
Morning lark

카테고리

분류 전체보기 (1929)
Fuel Cell (854)
New Energy (944)
Energy Storage (6)
New Biz Item (2)
Total
Today
Yesterday

高砂熱学がPEM型水電解、TMEICがIGBT整流器を納入

北海道千歳市にある「キリンビール北海道千歳工場」では、ビール製造工程で使用するボイラー用燃料の一部を、今年6月からグリーン水素へ転換する実証プロジェクトに取り組む。出力約2MWの太陽光設備で発電した電力を使い水の電気分解によって水素を製造する。

キリンビール北海道千歳工場
(出所:キリンビール)
 

 電気分解装置には、高砂熱学工業製のPEM(固体高分子)型、同装置に投入する直流電流を作り出す整流器にはTMEIC(ティーマイク)製のIGBT方式を採用する。製造した水素を活用するボイラーの設計は三浦工業が担当した。

キリンビール北海道千歳工場における水素製造・活用のイメージ
(出所:TMEIC)
 

 事業スキームとしては、三菱商事と高砂熱学が出資するMTグリーンエネルギー(東京都千代田区)が、水素製造設備の運転・維持管理を担い、水素を製造してビール工場に供給する。また、三菱商事クリーンエナジーが出資するMCKBエネルギーサービス(東京都千代田区)が、三浦工業製水素ボイラーを活用して水素由来蒸気を製造して供給する。

キリンビール北海道千歳工場における水素利用の事業スキーム
(出所:キリンビールなど)
 

 キリンビール、三菱商事、MCKBエネルギーサービス、高砂熱学工業、三浦工業の5社がプロジェクト概要を2月7日に発表した。またTMEICが整流器の納入に関して4月24日に公表した。

 ビール製造では、麦汁煮沸などの加温工程で大量の蒸気を使用する。従来は、ボイラーで化石燃料を燃やして蒸気を作っていたが、この一部を太陽光由来水素で置き換えることにより製造工程でのCO2排出を削減する。

 太陽光設備は約2MW規模、水電解装置は最大年間157tの水素製造能力を持つ。実証期間における水素供給量は年間70〜80tを想定する。これにより、年間最大約23%の熱需要を水素に代替し、年間約464tのCO2排出量を削減できる見込み。実証期間は10年間の予定で、他工場への展開なども検討していく。

 PEM型水電解装置は、すでに普及しているアルカリ水電解方式に比べて、小型化が容易で、太陽光によって変動する出力への応答性に優れるという特徴がある。TMEICが納入する水素製造用整流器は、高砂熱学製のPEM型水電解装置「Hydro Creator(ハイドロクリエイター)」の一部として組み込まれる。

 整流器は、従来、サイリスタ素子を使う他励式が一般的で、大容量に適しているものの高調波が発生するなどの課題もあった。TMEICはIGBTというパワー半導体を使った自励式を国内外でいち早く開発し、製品化している。IGBT方式は、高調波レス・高力率・低直流リップルなどの特長があり、変動する再生可能エネルギー由来の電源に向いている。

Posted by Morning lark
, |

A novel design using pure platinum, graphene-protective layer and porous carbon support could enable fuel cells to power heavy-duty trucks reliably

For trucks and heavy-duty vehicles that must travel long distances without frequent, time-consuming charging stops, batteries often fall short. Hydrogen fuel cells — which can be refueled as quickly as traditional gasoline — offer a cleaner, more efficient alternative.

Now, researchers at UCLA have made a breakthrough that could dramatically extend the lifespan of these fuel cells, making them a more viable clean energy source that can help bring sustainable, long-haul trucking closer to reality.

Led by Yu Huang, a professor of materials science and engineering at the UCLA Samueli School of Engineering, the research team has developed a new catalyst design capable of pushing the projected fuel cell catalyst lifespans to 200,000 hours, which is nearly seven times the U.S. Department of Energy’s target for 2050. Published in Nature Nanotechnology, the research marks a significant step toward the widespread adoption of fuel cell technology in heavy-duty vehicles, such as long-haul tractor trailers.

Although medium- and heavy-duty trucks make up only about 5% of vehicles on the road, they are responsible for nearly a quarter of greenhouse gas automobile emissions, according to federal estimates. This makes heavy-duty applications an ideal entry point for polymer electrolyte membrane fuel cell technology.

Because fuel cells are significantly lighter than batteries, they require less energy to move the vehicles. With a projected power output of 1.08 watts per square centimeter, fuel cells featuring the new catalyst can deliver the same performance as conventional batteries that weigh up to eight times more. This difference is especially relevant for heavy-duty vehicles, which not only carry substantial cargo but also tend to be much heavier than standard vehicles. In addition, building a national hydrogen-refueling infrastructure would likely require less investment than establishing an electric vehicle-charging network across the country.

Fuel cells work by converting the chemical energy stored in hydrogen into electricity, emitting only water vapor as a byproduct. This has made them a promising solution for cleaner transportation. However, the slow chemical reaction for the energy conversion has been a challenge, requiring a catalyst to achieve practical speeds.

While platinum-alloy catalysts have historically delivered superior chemical reaction, the alloying elements leach out over time, diminishing catalytic performance. The degradation is further accelerated by the demanding voltage cycles required to power heavy-duty vehicles.

To address this challenge, the UCLA team has engineered a durable catalyst architecture with a novel design that shields platinum from the degradation typically observed in alloy systems.

The researchers began by embedding ultrafine platinum nanoparticles within protective graphene pockets. Composed of a single layer of carbon atoms arranged in a two-dimensional honeycomb lattice, graphene is the thinnest known material. Despite its atomic thinness, it is incredibly strong, lightweight and highly conductive. These graphene-encased nanoparticles were then nested inside the porous structure of Ketjenblack, a powdery carbon material. This “particles-within-particles” design provides long-term stability while preserving the high catalytic activity essential for efficient fuel cell performance.

“Heavy-duty fuel cell systems must withstand harsh operating conditions over long periods, making durability a key challenge,” said Huang, who holds the Traugott and Dorothea Frederking Endowed Chair at UCLA Samueli. “Our pure platinum catalyst, enhanced with a graphene-based protection strategy, overcomes the shortcomings of conventional platinum alloys by preventing the leaching of alloying elements. This innovation ensures that the catalyst remains active and robust, even under the demanding conditions typical of long-haul applications.”

The new catalyst exhibited a power loss of less than 1.1% after an accelerated stress test involving 90,000 square-wave voltage cycles designed to simulate years of real-world driving, where even a 10% loss is typically considered excellent. These superior results project fuel cell lifetimes exceeding 200,000 hours, far surpassing the DOE’s target of 30,000 hours for heavy-duty proton exchange membrane fuel cell systems.

By successfully addressing the dual challenges of catalytic activity and durability, UCLA researchers’ innovative catalyst design holds great promise for the adoption of hydrogen-powered heavy-duty vehicles — an essential step toward reducing emissions and improving fuel efficiency in a sector that accounts for a substantial share of transportation energy use.

The team’s findings built on its earlier success in developing a fuel cell catalyst for light-duty vehicles that demonstrated a lifespan of 15,000 hours — nearly doubling the DOE’s target of 8,000 hours.

The new study’s lead authors are UCLA Ph.D. graduates Zeyan Liu and Bosi Peng, both advised by Huang, whose research group specializes in developing nanoscale building blocks for complex materials, such as fuel cell catalysts. Xiaofeng Duan, a professor of chemistry and biochemistry at UCLA, and Xiaoqing Pan, a professor of materials science and engineering at UC Irvine, are also authors on the paper. Huang and Duan are both members of the California NanoSystems Institute at UCLA.

Other authors on the paper are Yu-Han “Joseph” Tsai and Ao Zhang from UCLA, as well as Mingjie Xu, Wenjie Zang, XingXu Yan and Li Xing from UC Irvine.

UCLA’s Technology Development Group has filed a patent on the technology.

 

UCLA Breakthrough Extends Fuel Cell Lifespan for Clean Trucking

 

UCLA Breakthrough Extends Fuel Cell Lifespan for Clean Trucking - Fuelcellsworks

Researchers at UCLA have developed a new catalyst design that can extend the lifespan of fuel cells to over 200,000 hours, making them a viable clean energy source for heavy-duty vehicles.

fuelcellsworks.com

 

Posted by Morning lark
, |