블로그 이미지
Morning lark

카테고리

분류 전체보기 (1900)
Fuel Cell (852)
New Energy (918)
Energy Storage (6)
New Biz Item (2)
Total
Today
Yesterday

달력

« » 2025.5
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

공지사항

최근에 올라온 글

産業や運輸の脱炭素化に向けた重要な手段の一つとして水素の認知が高まり、近年、新たな水素イニシアティブの数が急速に増加しています。その一方で、国際エネルギー機関 (IEA) によれば、2050年までにネットゼロを実現し、パリ協定の目標を達成するには、より迅速な行動が必要であるとされています。

水素製造には幅広い技術が存在しますが、その中でも「クリーン」な水素製造方法は水の電気分解です。このプロセスでは、太陽光や風力などの再生可能エネルギーを利用して、水分子を水素と酸素に分解します。

ブルームバーグNEFは、2030年までに低炭素型水素の年間供給量が30倍に増える可能性があると予測しています。また、アナリストは従来の化石燃料から水素を取り出し、同時に発生するCO2を回収する「ブルー水素」が重要な役割を果たす一方、供給量の半分以上は電気分解による水素が占めるだろうと予想しています。

『世界で増加する低炭素型水素の生産』

IEAのGlobal Hydrogen Review 2024によると、利用可能な電解技術では、現在のところアルカリ水電解装置が設備容量の60%を占め、続いてプロトン交換膜 (PEM: Proton Exchange Membrane) 水電解装置が約22%を占めています。

しかし、最近では、高温水蒸気電解 (SOEC)※1が、カーボンフリー水素生成のさらなる方法として注目されるようになりました。それでは、SOECとはどのようなもので、水素製造能力の拡大にどのように役立つのでしょうか。

※1 SOEC:Solid Oxide Electrolysis Cell

現在利用されているさまざまな電解技術の種類

アルカリ水電解は最も普及している水素製造方法です。アルカリ水電解装置は陽極と陰極の2つの電極に、電極間の多孔質セパレータ (隔膜) を備えています。電解質は、水酸化カリウム (KOH) などアルカリ水溶液が使用されます。電極に電気が印加されると、負に帯電した陰極で水分子が分離し、水素が放出されます。アルカリ水電解は一般的に50℃~80℃で動作する低温技術です。

アルカリ水電解装置は、水酸化ナトリウム製造などの分野で長年の実績がある技術です。ただし、多孔質セパレータを用いるため、ガスを完全に封じ込められず、水素生成の際の電解効率に課題があります。

PEMは同様の低温技術ですが、高分子膜セパレータを採用しており、電解反応から発生するガスの封じ込め能力は、アルカリ水電解装置よりも優れています。

そして、SOECも電解技術が採用されている点は変わりませんが、前述の水電解装置よりはるかに高温の800℃~1,000℃で作動し、仕様によっては600℃から作動するものもあります。このような高温に対応するために、三菱重工のSOECシステムではセパレータとしてセラミック製のセルを使用します。

SOEC(高温水蒸気電解)の水素発生原理

 

 

SOECの利点とは

SOECは、運転温度が上がるにつれて、電力として必要なエネルギーは減少し、残りのエネルギーは自らの発熱による熱で供給されます。ゴールドマン・サックス・リサーチ(Goldman Sachs Research) によれば、SOECは現時点で最大で効率85%の達成が可能であり、三菱重工は、効率90%の達成に向けて既に開発を進めています。なお、アルカリ水電解およびPEM水電解の場合、効率は最大で約70~75%です。

三菱重工の水電解装置の開発を指揮する小阪 健一郎 博士(エナジードメイン技術戦略室技監・主幹技師)は、「高効率のSOECは、理論的には他のどのタイプの電解装置よりもkWあたり多くの水素を生成することができます」と説明します。

これまでのところ、アルカリ水電解装置およびPEMは、SOECよりも長寿命であることが知られています。しかし、小阪博士は、「理論的にはSOECと他の電解技術の間に大きなギャップはありません。寿命は使用する電解質材料によって決まります。実際、三菱重工のSOECに使用されているイットリア安定化ジルコニアは、ガドリニウムドープセリアなど他の電解質に比べて導電性は低いのですが、高温による劣化はそれらほどありません。」と指摘します。

三菱重工は長崎カーボンニュートラルパークでSOEC技術の開発を進めており、世界初の水素製造から発電までの総合実証施設である高砂水素パークでデモ機を運用しています。これには、SOECと同じ電気化学技術を逆のプロセスで使用する同社の固体酸化物形燃料電池 (SOFC※2) の実績が生かされています。

※2 SOFC:Solid Oxide Fuel Cell

SOEC商業化までの道のり

IEAによると、2023年にSOECで製造されたグリーン水素は全体の約1%にとどまっています。しかし、オランダの製油所のグリーン水素施設やカリフォルニア州NASA研究センターのシステムの導入など、商用化は進んでいます。

三菱重工は、数百メガワット級の発電所向けに設計された総合効率90%の大型モジュール型SOECを2020年代末までに市場に投入することを目指しています。

SOECデモ機を運用中の三菱重工 高砂水素パーク

電解装置の商用化には希少元素へのアクセスが重要な要素ですが、この点についてもSOECには優位性があることが指摘されています。PEMは世界で最も希少なプラチナとイリジウムという2つの貴金属に依存していますが、SOECはこれらを必要としません。またSOECは高効率であるため、ニッケルやジルコニウムなどの他のレアメタルの需要もそれほど大きくはないとゴールドマン・サックス・リサーチは示唆します。     

「総合的に見て、SOECは大規模な水素製造プラントに最適な技術であると考えます。SOECはまだ発展段階にありますが、その効率の高さと、現段階では成熟した技術と考えられるSOFCを応用できることに意味があります」と小阪博士は述べます。

電解技術ミックスの拡大

IEAによれば、アニオン交換膜 (AEM)※3水電解装置を始め、開発段階にある電解技術も多くあります。AEM水電解の商用化については、三菱重工を始めとする複数の企業がその準備に関わっていることから、これらも今後数年間で大きく成長を遂げることでしょう。

※3 AEM: Anion Exchange Membrane

しかし、グリーン水素製造技術はどれが一番というわけではなく、どの技術を選択するかは、各プロジェクト固有の状況によって変わってきます。

例えばSOECは、地熱、水力、原子力などの非断続的なエネルギー源(non-intermittent sources)や、それらと他の再生可能エネルギーの組み合わせなどから安定した電力供給を受けられる大規模用途に特に適しています。     

最も野心的な脱炭素シナリオが実現すれば、2050年までにクリーン水素が水素需要全体の73~100%を占める可能性があるとマッキンゼーは予想しています。これを達成するために、鉄鋼、セメント、大型輸送などのCO2集約型産業も、グリーンエネルギー生産も、各自が入手できるあらゆる技術を必要とするでしょう。

脱炭素化への道のりは困難が伴います。グリーン水素は実現可能な道筋を示しているものの、持続可能なエネルギーというコミットメントを達成するためには、より速いペースで供給される必要があります。

 

高温水蒸気電解(SOEC)でグリーン水素を促進 | Spectra by 三菱重工

 

高温水蒸気電解(SOEC)でグリーン水素を促進 | Spectra by 三菱重工

水素製造には幅広い技術が存在しますが、最近では、高温水蒸気電解 (SOEC)が、カーボンフリー水素生成のさらなる方法として注目されるようになりました。三菱重工は長崎カーボンニュー

spectra.mhi.com

 

Posted by Morning lark
, |
보호되어 있는 글입니다.
내용을 보시려면 비밀번호를 입력하세요.

Investment to accelerate hybrid AEM hydrogen technology deployment

Air Liquide Venture Capital (ALIAD) has provided significant backing to Ohio-based electrolyser start-up Power to Hydrogen (P2H2) in the second close of its Series A funding round. This investment, whose exact financial details remain undisclosed, follows P2H2’s successful initial funding round in August 2024, which raised over $18 million (~$18m), aimed at expanding deployment and manufacturing of its innovative hydrogen-production systems.

The investment further strengthens P2H2’s ambitions to scale up its proprietary hybrid electrolyser technology—a unique combination of alkaline liquid and Anion Exchange Membrane (AEM) layers, which addresses common challenges associated with standard AEM electrolyser systems. Specifically, the hybrid approach mitigates issues like membrane oxidation and the use of “unstable ionomers” at the anode, paving the way for a more robust, scalable, and commercially viable hydrogen-production solution.

Power to Hydrogen’s CEO, Paul Matter, highlighted the strategic importance of this partnership, stating, “This support from @Air Liquide's venture capital arm is a powerful enabler to further develop our technology to meet the growing commercial demand for clean hydrogen."

The initial close of the Series A funding round featured prominent industry players, including EDP Ventures, American Electric Power (AEP), Asahi Kasei, and JERA, underscoring strong market interest and industry validation for the technology.

With this recent backing from Air Liquide, P2H2 is accelerating its readiness to sell megawatt-scale systems built on modular 250kW electrolyser stacks. Although the company previously announced plans for deploying the “largest” AEM electrolyser stack installation at the Port of Antwerp-Bruges by Q4 of last year, further updates on this specific deployment have yet to be announced.

P2H2 expressed gratitude and excitement for Air Liquide’s support, emphasizing the shared vision of "enabling clean hydrogen as a key part of the global energy ecosystem."

Air Liquide, already an established global leader in hydrogen, operates comprehensively across hydrogen production, distribution, storage, and end-use applications, making this partnership strategically beneficial for both parties.

According to P2H2, the new investment from ALIAD “will accelerate our ability to deploy commercial Hybrid Anion Exchange Membrane (AEM) electrolysis systems and scale up production of our Hybrid AEM electrolyzer technology.” 

 

Air Liquide Backs US Hydrogen Tech Firm P2H2

 

Posted by Morning lark
, |

Maximizing hydropower efficiency with hydrogen production

Hydropower is a reliable source of energy. However, the inconsistent nature of water flows and electricity demand often challenges hydropower operators and reduces revenue.

To address these challenges, the Idaho National Laboratory (INL) and Pacific Northwest National Laboratory (PNNL) partnered with Idaho Power, which operates 17 hydroelectric projects, to analyze the economic and environmental impacts of integrating hydrogen production with hydropower plants. The project, funded by the Department of Energy’s Water Power Technology Office, aims to increase the revenue of hydropower plants.

There are two main types of hydropower plants: run-of-river and impoundment. Both types can be integrated with hydrogen production.

Run-of-river plants generate electricity based on the flow of the river, without the ability to store water for extended duration. However, their power output fluctuates with the river’s flow, which changes throughout the year. Impoundment plants can store and release water as needed to meet seasonal energy and water demands. These reservoirs often provide recreational opportunities as well.

Hydropower challenges

Both run-of-river and impoundment plants are less profitable during times of low demand.

Dan Wendt, a chemical engineer at INL and the principal investigator on the study, said:

Especially in the spring, there are times when there’s a lot of water flow that can be used for hydropower generation, but the power demand is low and power generation isn’t particularly profitable,

Although impoundment plants can store water, operators are still required to release it based on the plant’s Federal Energy Regulatory Commission license or other regulatory requirements, even if they aren’t generating power and profit.

Fred Noland, an environmental manager for recreation and public access at Idaho Power, said:

We have to let a certain amount of water go downstream to support environmental objectives like fish migration, water quality improvement and managing water supplies during a drought,

“There are a lot of challenges, but they’re not insurmountable.”

Another challenge for impoundment hydropower operators is maintaining downstream oxygen levels. Reservoirs and dams can reduce downstream oxygen levels, negatively impacting aquatic life.

Normally, as a river flows, the water tumbles and mixes, distributing oxygen throughout. When water is trapped behind a dam, it forms layers. The top layer is heated by the sun and the warmer water stays near the top, while the bottom layer remains cooler and oxygen-poor.

Water downstream from the dam can suffer from low oxygen when water is released from the reservoir’s oxygen-poor layer. To mitigate this, hydropower plants use special equipment or operational techniques, such as spilling water over the dam or turbine venting, which reduce water available for power generation.

Hydrogen integration offers solutions

Hydrogen production could keep hydroelectric plants operating at near maximum capacity, and profitability, even during periods of low demand. Instead of letting water flow through the dam without generating electricity or producing power that is sold at low prices, operators could use energy to produce hydrogen.

The project team used advanced modeling and analytical methods to explore deployment scenarios that would maximize the benefits of hydrogen integration. Researchers evaluated various case studies for Idaho Power to determine the best system configurations, operating modes and hydrogen use applications for their developing hydrogen strategy.

Hydrogen has multiple uses. Primarily, hydrogen is valuable for transportation fuels and the production of fertilizers, metal, pharmaceuticals, silicon chips and glass. It is used to refine petroleum into gasoline and diesel and to extend the shelf life of foods.

Wendt said,

If the hydropower plant were integrated with a hydrogen production facility, they could store the clean hydrogen for power generation when the demand is high or sell the hydrogen into a chemical or transportation fuel market where the pricing is more consistent,

Hydrogen can also be banked and turned back into electricity when demand exceeds what the plant can produce. By using hydropower and hydrogen generation in tandem, Idaho Power could provide more support to the grid and increase revenue.

Wendt said,

Adding hydrogen enhances grid stability and creates a more flexible power plant,

Oxygen, a byproduct of hydrogen production, can be added to the water as it flows through the power plant, which may be more cost effective than other oxygenation methods.

By producing hydrogen, Idaho Power could harness hydropower to improve power production and open new sources of revenue. Hydrogen production potentially increases revenue during low energy demand, and the oxygen byproduct can improve water quality.

Noland, who led a strategy council team to create a hydrogen roadmap for Idaho Power, said:

One of the things I think it’s important to pull from this is that sometimes you do the research and exploration, and it isn’t the right time or ‘no’ is the answer,

“INL and PNNL were able to connect data and information for it to be spatially and temporally valuable. It helped us understand the market and what would be needed.”

Maximizing hydropower efficiency with hydrogen production - Hydrogen Central

 

Posted by Morning lark
, |

Europe’s largest electrolyzer unveiled, can produce 8,000 tons of hydrogen annually

 

The 54MW PEM electrolyzer will produce up to one metric ton of hydrogen every hour, supporting BASF’s chemical production with reduced emissions.

 

Chemicals giant BASF announced that they have implemented Europe’s largest green hydrogen project to reduce carbon emissions.

 

Built with Siemens Energy, the 54MW PEM electrolyzer’s design enables it to supply the main plant with up to “one metric ton of this substantial chemical feedstock every hour,” according to BASF’s news release.

 

Described as “truly unique,” 72 stacks, or modules in which the electrolysis takes place, have been integrated into the production and infrastructure at the Ludwigshafen site. It is the largest project of its kind in Germany to date, making it an important pioneer as the industry strives to achieve climate targets. The emission-free water electrolyzer could reduce greenhouse gas emissions by up to 72,000 metric tons annually.

 

A big step forward for hydrogen production

 

As Germany’s largest proton exchange membrane (PEM) electrolyzer, it uses electricity from renewable sources to produce hydrogen free of emissions. The hydrogen is then “fed into the site’s hydrogen Verbund network and distributed to the production facilities as a raw material,” BASF’s press release explains.

 

The robust machine would primarily provide feedstock for chemical products, as demand is increasing for more output and less environmental waste. Currently, hydrogen is used to produce ammonia, methanol, and vitamins.

 

Additionally, BASF will,Supply hydrogen for mobility in the Rhine-Neckar Metropolitan Region, supporting the development of a hydrogen economy in the area.

 

As Katja Scharpwinkel, member of BASF SE’s Board of Executive Directors and Site Director Ludwigshafen said,

The commissioning of the electrolyzer makes it possible for us to support our customers in achieving their climate targets by offering them products with a lower carbon footprint.

 

She continued,

At the same time,

“we are gaining experience at our largest Verbund site with the integration and operation of a system that brings us another step closer to transforming our main plant in Ludwigshafen. We welcome the fact that the federal government and state government have recognized the importance of this technology and provided us with significant support toward the project’s implementation.”

 

The State of Rhineland-Palatinate and the German Federal Ministry for Economic Affairs and Climate Action provided up to €124.3 million for the plant’s construction.

 

Its 54MW PEM electrolyzer will generate 8,000 tonnes (8,818 tons) of hydrogen annually, replacing grey hydrogen.

 

Net zero emissions: the goal

 

Katrin Eder, Rhineland-Palatinate’s State Minister for Climate Protection, Environment, Energy, and Mobility said.

 

BASF has embarked on an ambitious path to net zero,

 

“In addition to progressively increasing its generation of electricity and process heat from renewable energies, the company also plans to use renewable raw materials as alternatives to the fossil energy sources currently employed, such as natural gas. Designed to produce green hydrogen as a raw material, the new electrolyzer at the Ludwigshafen location represents an important milestone and supports the achievement of Rhineland-Palatinate’s climate protection targets.”

 

Udo Philipp, State Secretary at the Federal Ministry for Economic Affairs and Climate Action, added,

 

A flagship project for the integration of hydrogen into a chemical production site has become a reality at the Ludwigshafen site.

 

“Through this collaboration, BASF is demonstrating what decarbonization of the industrial sector can look like in practice and inspiring further technological progress.”

 

Source:  Hydrogencentral

Posted by Morning lark
, |