블로그 이미지
Morning lark

카테고리

분류 전체보기 (1795)
Fuel Cell (837)
New Energy (833)
Energy Storage (6)
New Biz Item (2)
Total
Today
Yesterday

달력

« » 2025.2
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28

공지사항

최근에 올라온 글

Newly re-elected European Commission president vows to launch Clean Industrial Deal in first 100 days

 

Ursula von der Leyen has been re-elected European Commission president, with her manifesto and today’s speech to the European Parliament vowing to continue many of her policies around the energy transition, including the deployment of clean hydrogen.

 

“We will stay the course on our new growth strategy and the goals we set for 2030 and 2050,” she said. “Our focus now will be on implementation and investment to make it happen on the ground.

 

“This is why I will put forward a new Clean Industrial Deal in the first 100 days. It will channel investment in infrastructure and industry, in particular for energy-intensive sectors. This will help create lead markets in everything from clean steel to clean tech and it will speed up planning, tendering, and permitting.”

 

Her manifesto further vowed to speed up and simplify the Important Projects of Common European Interest (IPCEI) scheme, which unlocks vast amounts of state aid for large-scale facilities but has been criticised by many green hydrogen developers as extremely slow and complex.

 

Von der Leyen’s “political guidelines” also include the deployment of a hydrogen network of pipelines throughout Europe and the expansion of an existing aggregate demand mechanism for purchasing gas to also include the purchasing of H2 and critical minerals.

 

Similarly, von der Leyen plans to invest in African infrastructure, including for green hydrogen production, via the Global Gateway fund.

 

However, the re-elected European Commission president’s insistence that she will “stay the course” on 2030 and 2050 targets could raise eyebrows, given her previous administration had been criticised as setting unrealistic targets by the EU’s external auditors in a report published this week.

 

The Commission itself had strongly rejected the call in the report to revise its target for 20 million tonnes of H2 a year by 2030, arguing that this rollback would discourage investment in hydrogen infrastructure.

 

In her speech, von der Leyen also noted that the EU was already a leader in attracting investment in H2: “We attract more investments in clean hydrogen than the US and China combined.

 

“Finally, in the last years, we have concluded with global partners 35 new agreements on clean tech, hydrogen and critical raw materials. This is the European Green Deal in action.”

 

Von der Leyen, who hails from Germany's centre-right Christian Democratic Union party, won 401 votes in the 720-seat European parliament in the vote held today (Thursday).

 

Those endorsing her included the 53-member Green bloc, as well as three centrist groupings.

 

Posted by Morning lark
, |

2024年7月16日、ヤンマーエネルギーシステムは水素を使って発電する据え置き型の水素燃料電池発電システム「HP35FA1Z」を発表、同年9月2日から販売を開始するという。またこの製品は同年7月30日~8月2日に開催される「下水道展 2024東京」(東京ビッグサイト)に展示される。

 

 

【写真】ヤンマーの水素燃料電池発電システム「HP35FA1Z」をもっと見る

 

いまでこそ、トラクターや耕運機など農業機械、ショベルやホイールローダーなどの建設機械、プレジャーボートや漁船といった船舶のメーカーとして知られるヤンマーだが、1912年の創業時から続いている事業は発動機だ。山岡発動機工作所として創業した当初はガス発動機の修理・販売を行う企業だったといい、1921年に変量式石油発動機を製造販売して以来100年以上発動機メーカーとしての歴史を持つ。 こうして自社開発した発動機を活用して多面展開されてきた事業のひとつに、ディーゼルエンジンやガスタービンなど燃料を使用した「発電機」がある。一方で、脱炭素社会の実現に向けて再生可能エネルギーの活用が注目される中、廃食油を使ったバイオディーゼル、バイオガスといったカーボンニュートラルソリューションによる発電機事業も展開されている。 そして、2050年カーボンニュートラルに向けてエネルギー安定供給・脱炭素・経済成長を同時に実現するための法律「水素社会推進法」が2024年5月に成立するなど水素への注目度は高まる中、ヤンマーエネルギーシステムは発電出力35kWの水素燃料電池発電システム「HP35FA1Z」を開発、2024年9月2日に受注を開始することを発表した。 同社は、岡山試験センター内に実証施設「YANMAR CLEAN ENERGY SITE」を2023年9月に開設し、水素発電システムや蓄電池などクリーンエネルギー機器の耐久試験や技術開発といった実証試験を行ってきた。 こうした技術を導入したのがHP35FA1Zで、発電時に二酸化炭素(CO2)や窒素酸化物(NOx)など排出ガスを出さない燃料電池ならではの性能に加えて、運転に必要な系統連系用電力変換装置をはじめとする機器を内蔵することで、導入時の工事を簡素化できるのもメリットのひとつ。 また幅2340×奥行900×高さ2290mmというサイズは、出力35kW級の発電システムで最小クラスのコンパクト設計でもある。省スペース性を活かして、必要とする電力量や利用可能な水素の量に合わせて最大16台を併設、一括制御して運転することもできるという。 脱炭素化の目標値は業種や規模など企業によって異なる。必要なタイミングで必要な数を導入できる燃料電池発電システムというわけだ。 【ヤンマーの水素燃料電池発電システム「HP35FA1Z」】 型式:HP35FA1Z 発電効率:51.2% 発電出力:35kW(連系時)、35kVA(自立時) 変量電池の種類:固体高分子形燃料電池(PEFC) 燃料:水素(純度≧99.97%) 制御台数:最大16台(連系運転時) サイズ:幅2340×奥行900×高さ2290mm 質量:1650kg

 

 

ヤンマーが燃料電池発電システム「HP35FA1Z」を発表。最大16台を一括制御(スマートモビリティJP) - Yahoo!ニュース

 

ヤンマーが燃料電池発電システム「HP35FA1Z」を発表。最大16台を一括制御(スマートモビリティJ

2024年7月16日、ヤンマーエネルギーシステムは水素を使って発電する据え置き型の水素燃料電池発電システム「HP35FA1Z」を発表、同年9月2日から販売を開始するという。またこの製品は同年7月3

news.yahoo.co.jp

 

Posted by Morning lark
, |

 Hannover Messe 2024には出展しなかった企業や研究所の中にも、PEM(Proton Exchange Membrane)形水電解装置でイリジウム(Ir)の使用量を大きく低減させつつあるところは複数ある。

 その1つが、理化学研究所だ。同研究所は2024年5月に、Irの使用量を0.08mg/cm2まで低減したと発表した。

理研はIrを原子単位で活用

 理化学研究所の工夫は、Irを原子単位で用いたことだ(図A-1)注A-1)。Irは、二酸化マンガン(MnO2)のMn原子の一部をIrで置換した格好で、価数は6価であるという注A-2)。同研究所はこの触媒を「atomically dispersed IrVI oxide (IrVI-ado)」と呼ぶ。

図A-1 Irを原子単位で利用
IrVI-ado触媒の高角散乱環状暗視野走査透過顕微鏡(HAADF-STEM)写真。白い輝点がそれぞれIr原子である(出所:理化学研究所)
[画像のクリックで拡大表示]
注A-1)具体的には、MnO2/PTL電極を、K2IrCl6を溶解させた希硫酸にセ氏95度で6時間以上浸漬してIrを吸着させた後、セ氏450度で焼成した。
注A-2)この結果、MnO2中のMn原子も、電荷のバランスを取るために一部が元の4価から3価になる。「平均的には3.6~3.7価になっている」(理化学研究所 研究員の孔爽氏)。

 理化学研究所によれば、これまでのPEMでは、Ir触媒は、数万個の酸化イリジウム(IrO2)またはIr原子から成る、粒径が数十nmのナノ粒子の形で使われていて、ナノ粒子内部のIr原子は触媒機能に貢献していなかったとする。今回、Irを原子単位で活用することで、少ないIr使用量でも触媒としての性能を確保できると考えた。

大面積化と耐久性向上がカギに

 理化学研究所はこの技術の実用化を東ソーなどと協力して進めているという。今後のポイントとなるのは、大面積化と耐久性の向上になりそうだ。

 実用化するにはまず、現時点で1cm2であるこの触媒付きPTLを、少なくとも数十cm角に拡大する必要がある。

 また、耐久性についても、現在実用化されているPEM形水電解向けMEAやCCMの耐久性は3万~8万時間。研究開発レベルでは連続運転で10年、すなわち8万7000時間超の実現も視野に入りつつある。

 一方、今回の技術の耐久性は、電流密度が1.8A/cm2の場合に2500時間以上、同1A/cm2であれば3800時間以上であることを確認したとする(図A-2(a))。しかもそれが限界値ではない注A-3)。

図A-2 0.08mg/cm2であれば耐久性は3800時間以上
Irの使用量が0.02mg/cm2、0.04mg/cm2、0.08mg/cm2でそれぞれ1A/cm2の電流を流した場合のIrVI-ado触媒の耐久性(a)。0.02mg/cm2では1710時間が限界。0.04mg/cm2の場合、一見安定だがわずかに電圧が上昇しており、2000時間で測定を停止。0.08mg/cm2の場合は3800時間たっても電圧上昇がみられなかったが、システムの故障で測定を停止した。IrVI-ado触媒(赤いプロット)と既報のIr触媒の質量活性と触媒回転数(Ir原子1個が生産する酸素分子O2の数)の関係(b)。IrVI-ado触媒は質量活性と触媒回転数の両方でトップクラスにいる。図中のローマ数字(I~V)は試料番号で、それぞれIrVI-ado触媒中のIr利用量と電流密度が異なる。IVはIrの利用量が0.08mg/cm2で電流密度が1.8A/cm2のケース、Vは同0.02mg/cm2、2A/cm2のケース(出所:理化学研究所)
[画像のクリックで拡大表示]
注A-3)“3800時間以上”というのは、3800時間測定したところで水回りのシステムが故障して、測定を続けられなかったのだという。

 触媒材料自体は、論文で既報のIr触媒のほとんどを触媒活性やIr原子1個当たりの酸素(O2)の生産性(専門用語では触媒回転数)で上回り、潜在力が高い(図A-2(b))。

 この研究ではIrの使用量をさらに減らした0.04mg/cm2や0.02mg/cm2も試したが、そこまでIr使用量を減らすとさすがに耐久性は低下するようだ。

 

0.1mg/cm2以下や“Irフリー”の研究開発が進展 | 日経クロステック(xTECH) (nikkei.com)

 

0.1mg/cm2以下や“Irフリー”の研究開発が進展

 Hannover Messe 2024には出展しなかった企業や研究所の中にも、PEM(Proton Exchange Membrane)形水電解装置でイリジウム(Ir)の使用量を大きく低減させつつあるところは複数ある。

xtech.nikkei.com

 

Posted by Morning lark
, |

TOPPANホールディングスが次の事業の柱に見据えるのが、水素だ。創業以来培ってきた印刷技術を、水電解装置や燃料電池向けの電極製造に生かす。およそ19年かけて開発した電極製造技術「ダイレクトコーティング」は、既存の転写方式と比べて触媒層と電解質膜の密着性が高く、優れた出力特性と耐久性を示すという。

 この方式で製造した触媒層付き電解質膜(Catalyst Coated Membrane、CCM)、及び膜電極接合体(Membrane Electrode Assembly、MEA)の販売を2023年8月に開始し、水素市場への参入を果たした。開発を率いた谷脇和磨氏にこれまでの経緯や今後の展開を聞いた。

およそ20年前の2004年に検討が始まったと聞いている。深刻化する地球温暖化を抑えるべく当社のコア技術を生かして何か貢献できないかと考え、TOPPANが着目したのが水素エネルギーだった。はじめは、研究テーマに暗中模索する時期が長らく続いたそうだ。

 2012年に私がプロジェクトに加わり、水素社会の実現に向けて改めて方向性を議論した。その結果、将来は燃料電池車(FCV)が普及すると予想して、FCV向けのMEA加工の開発に舵(かじ)を切った。

 

TOPPANが新事業に水素、19年間極秘で進めた電極開発 | 日経クロステック(xTECH) (nikkei.com)

 

TOPPANが新事業に水素、19年間極秘で進めた電極開発

 TOPPANホールディングスが次の事業の柱に見据えるのが、水素だ。創業以来培ってきた印刷技術を、水電解装置や燃料電池向けの電極製造に生かす。およそ19年かけて開発した電極製造技術

xtech.nikkei.com

 

Posted by Morning lark
, |

In addition to the cost of electricity, the price of hydrogen depends largely on the up-front investment cost of the electrolyzer. The lower the full-load hours, the greater the impact. Analyst BloombergNEF (BNEF) sees a number of different possible pathways for the market to develop.

MARCH 21, 2024

All electrolyzers have a technology-specific stack at their center, in which water is split into hydrogen and oxygen. This consists of carefully layered, gas-tight, welded bipolar plates and plastic membranes – among the main cost factors in every electrolysis plant. Xiaoting Wang, an analyst at BloombergNEF, spoke to 20 companies worldwide as part of the company’s “Electrolysis System Capex [capital expenditure] could drop 30% by 2025” study. This gave her an insight into the cost structure for 30 projects and made it possible to determine the price components for a 10 MW alkaline electrolysis plant in China in 2021, as an example.

The stack accounted for around 33% of the total costs, said Wang, with 40% of the costs coming from the other technical equipment, including power electronics, gas and liquid separation, and gas purification (see chart below). A further 27% of the costs were attributable to other project expense, such as civil engineering, equipment installation, and housing.

Chinese alkaline

The BNEF report stated a 10 MW alkaline system often consists of two stacks of 5 MW that deliver hydrogen at 16 bar. The manufacturer usually offers a complete solution with all accessories and installation. Chinese developers received such an offer in 2021 for as little as $303/kW – that is, a total of around €3 million ($3.2 million). This did not include the grid-connection fee, high-voltage transformers, or other “soft” costs such as expenses for development, approvals and financing agreements.

Wang said that the project costs in Western markets with domestically produced electrolyzers are around four times as high. Investment costs averaged €1,200/kW for alkaline electrolyzers and €1,400/kW for proton exchange membrane (PEM) electrolyzers.

Cheaper offers, such as €180/kW, from Peric for an 80 MW plant in China; or €521/kW, from Thyssenkrupp for a 2 GW plant in Saudi Arabia, do not include all project costs and are, therefore, not comparable. They do include electrolysis stacks, gas liquid separation and purification, and the water supply. However, power electronics and control cabinets are excluded.

Wang attributed this large price difference to low labor costs and the established supply chains in China, where manufacturers of electrolyzers can source materials and components at much lower prices than in the West. Thus far, the production of most electrolyzers is not automated. Chinese manufacturers were producing megawatt-scale electrolyzers for other industries before there was demand from green hydrogen producers, meaning they benefited from scaled production. Existing customers included manufacturers of polysilicon for photovoltaic cells.

The Bloomberg analysis, from September 2022, claimed that Western manufacturers could achieve similarly low costs. To do so, they would have to utilize highly automated production. Wang said she anticipates significant price reductions by as early as 2025 (see main chart above). Prices for 2021 also still included adequate margins for engineering, procurement, and construction (EPC) companies. Long-term development shows that prices for electrolysis projects will converge worldwide from 2035.

Western investors tend to entrust an EPC company with the handling of an entire project for a lump sum, and to rely on large, well-known companies. Such companies usually have little experience in the construction of electrolysis plants, however, so the safety premiums in the price of the overall offer are high. With increasing experience and the entry of specialized project planners, which leads to more competition, these surcharges should decrease.

Prefabricated containers

Equipment suppliers are also endeavoring to offer products that reduce the workload on the construction site, and thus cut costs. One trend that supports this is the development of containerized systems. This means that the various system components do not have to be assembled on site but are instead prefabricated in a factory, tested, and delivered to the intended location. This minimizes sources of error and reduces the deployment time of specialist personnel on site.

In an update to its market analysis, Bloomberg reported on offers for such container solutions for $1,000/kW. Industry insiders have even reported offers as low as $700/kW, said Wang. One such container solution was presented in a pv magazine Germany webinar in February 2023. The PEM electrolyzer from German supplier H-Tec has an output of 1 MW and produces 450 kg of hydrogen per day. Recordings of pv magazine webinars are available at pv-magazine.com/webinars.

Those who want to reduce costs by purchasing an electrolyzer from China need to consider that exported products are usually sold at a premium of around 20% to 30%, compared to prices on the domestic market, said BloombergNEF, meaning that development and project planning costs would still be higher. It is important to consider that choosing a Chinese brand to supply the core equipment could reduce a project’s chance of receiving local subsidies and could affect financing.

The first green hydrogen projects were, and still are, mainly designed to draw electricity from the grid, with the electrolyzers’ electricity consumption balanced monthly or annually against the suppliers’ renewable electricity generation. In this case, the technical disadvantage of alkaline electrolysis in terms of flexibility would not bother operators.

However, after 2030, most new green hydrogen projects will need to ensure an hourly match between power generation and power consumption for grid-connected electrolysis systems, which will lead to more off-grid projects being developed, said Wang. This trend is not only due to the need for a clearer definition of green hydrogen. A direct connection to renewables generation plants should also improve economic feasibility in the future. After all, using the grid to shift huge amounts of electricity will cost more in the future. Electrolysis with stable grid electricity will, therefore, not be able to produce cheaper hydrogen in the future than with solar and wind energy, with their low electricity generation costs.



Cost reduction

This is where PEM electrolyzers come into play. These can better follow the fluctuating electricity supply and also work efficiently in partial load operation or off-grid. However, this technology still needs to significantly reduce its dependence on expensive platinum group metals, especially iridium, in order to gain a dominant market share, said Wang. Plug Power, from the United States, and ITM Power, from the United Kingdom, use 200 grams to 300 grams of iridium per megawatt of capacity.

Current worldwide production of iridium is around seven metric tons per year. Even if the entire volume were used to produce catalysts for PEM electrolysis, this supply chain could only support a maximum of 35 GW per year. PEM can only dominate the green hydrogen market if manufacturers manage to significantly reduce the consumption of iridium per unit this decade or achieve an equivalent effect in parallel with improved metal recycling. Wang said Electric Hydrogen, a new United States-based manufacturer of PEM electrolyzers, has already reported using significantly less iridium than competitors.

There is also a chance that anion exchange membrane (AEM) electrolysis could replace PEM after 2030 because it does not use expensive metals. This means manufacturers must succeed in developing stacks that are suitable for large scale projects. Enapter is an AEM pioneer, building small stacks and assembling them into larger 1 MW units which are still small compared to other electrolyzers. California-based company Verdagy is just starting to sell 20 MW modules, each consisting of two 10 MW stacks.


More competition

The costs of Western products could initially fall by around 30% by 2025. In addition to technological progress, competition is also likely to increase. Manufacturers worldwide have announced a production capacity of 52.6 GW for this year while deliveries are optimistically only 5 GW, according to BloombergNEF’s forecast. In China, where there is already fierce competition for orders from project developers, manufacturers’ margins are small. In addition, developers hedge their risk against the manufacturer by paying only up to 85% of the agreed price on delivery and the rest once commissioning has been completed and performance is still good after 18 months.

The pressure is not yet as high on Western markets, as investors and project developers in Europe and the United States can reckon with relatively high subsidies. However, production capacities are also increasing here and factories need to be fully utilized. If Chinese manufacturers also seek their salvation in exports, it is foreseeable that the price war will increase in all markets.

Posted by Morning lark
, |