블로그 이미지
Morning lark

카테고리

분류 전체보기 (2294)
Fuel Cell (899)
New Energy (1240)
Energy Storage (6)
New Biz Item (2)
Total
Today
Yesterday

The "Anion Exchange Membrane (AEM) Electrolyser Market Analysis Report" offers a comprehensive and current examination of the market, encompassing crucial metrics, market dynamics, growth drivers, production factors, and insights into the top Anion Exchange Membrane (AEM) Electrolyser manufacturers. The Anion Exchange Membrane (AEM) Electrolyser market is anticipated to grow at a CAGR of 10.9% over the forecast period (2026 - 2033).

Anion Exchange Membrane (AEM) Electrolyser Market Size and and Projection

 

### Comprehensive Analysis of the Anion Exchange Membrane (AEM) Electrolyser Market

#### Scope of Anion Exchange Membrane (AEM) Electrolyser

The Anion Exchange Membrane (AEM) Electrolyser represents an innovative technology in the hydrogen production sector, characterized by its ability to facilitate the electrolysis of water using an anion exchange membrane. This technology distinguishes itself from traditional proton exchange membrane (PEM) electrolysers and alkaline electrolysers by offering several benefits, such as lower operational costs, increased efficiency, and broader operational pH ranges.

AEM electrolysers operate by allowing hydroxide ions to move from the cathode to the anode, thus enabling the production of hydrogen and oxygen from water using renewable electricity. This technology is particularly relevant in efforts to produce green hydrogen, an essential stepping stone towards decarbonizing various industries, including energy, transportation, and chemical manufacturing.

#### Significance in the Industry

The significance of AEM electrolysers in the industry is underscored by their potential to contribute to global sustainability goals. As the demand for clean energy increases, AEM electrolysers provide a viable pathway for producing hydrogen without the associated carbon emissions of traditional fuels. Furthermore, this technology is driving advancements in energy storage solutions, enabling better integration of renewable energy sources, such as wind and solar, into existing power grids.

The operational efficiency of AEM electrolysers also offers a competitive edge in terms of scaling hydrogen production, making them increasingly appealing to industrial players. Their ability to operate at lower costs can help facilitate the transition from fossil-fuel-based hydrogen production methods to green hydrogen, accelerating industry-wide adoption.

#### Role of Compound Annual Growth Rate (CAGR)

The Compound Annual Growth Rate (CAGR) is a critical metric for assessing the growth trajectory of the AEM electrolyser market from 2026 to 2033. A robust CAGR indicates not only the financial potential of the market but also reflects the increasing confidence among investors and stakeholders regarding the viability and scalability of AEM technologies.

As organizations grapple with the transition to a low-carbon economy, strategic investments in AEM electrolysers are expected to surge. A higher CAGR can be attributed to factors such as technological advancements, rising government support for hydrogen initiatives, and increasing awareness of energy security and climate change impacts.

#### Major Trends Influencing Future Development

1. **Technological Advancements**: Continuous research is leading to enhancements in membrane materials and cell designs that improve efficiency and durability. Innovations are anticipated to reduce costs and improve performance, thus driving market growth.

2. **Government Policies and Incentives**: As many countries are setting ambitious hydrogen and renewable energy targets, favorable policy frameworks and financial incentives could significantly spur market expansion.

3. **Decarbonization Initiatives**: Increased focus on reducing carbon footprints across industries will propel the adoption of green hydrogen, directly benefiting the AEM electrolyser market.

4. **Collaboration and Partnerships**: Strategic alliances among manufacturers, research institutions, and governments to foster innovation and scale production capacities are likely to become more prevalent, contributing to market acceleration.

5. **Emerging Energy Landscapes**: The shift towards decentralized energy systems and microgrid solutions can support the distributed deployment of AEM electrolysers, enhancing local energy resilience.

#### Anticipated Market Share Across Various Regions

The market share of AEM electrolysers is expected to show significant regional variations due to differing levels of industrial activity and government support for hydrogen technology.

1. **North America**: Likely to hold a considerable share, driven by substantial investments in green hydrogen projects and supportive regulatory policies aimed at emission reductions.

2. **Europe**: Expected to be a leader in the AEM electrolyser market, as many countries have pledged to invest heavily in hydrogen technology as part of their recovery and climate strategies.

3. **Asia-Pacific**: With rapidly advancing technology and increasing industrialization, countries like Japan, South Korea, and China are set to experience accelerated growth in their AEM electrolyser markets.

4. **Middle East & Africa**: Emerging as a significant market due to ongoing diversification efforts from oil-dependent economies and substantial investments in renewable energy.

5. **Latin America**: Though still in its nascent stages, investments in green hydrogen projects could open new opportunities for growth, particularly in countries with abundant renewable resources.

In summary, the Anion Exchange Membrane (AEM) Electrolyser market stands at a pivotal junction, poised for significant growth spurred by technological advancements, supportive policies, and an increasing shift towards sustainable energy solutions. As organizations and governments progressively prioritize decarbonization efforts, the AEM electrolyser will play a crucial role in facilitating the transition towards a hydrogen economy.

 

Anion Exchange Membrane (AEM) Electrolyser Market Major Players

 

  • "Enapter"
  • "SPF Hydrogen Energy"
  • "Alchemr"
  • "HydroLite"
  • "Sunfire"
  • "EvolOH"
  • "Cipher Neutron"
  • "Tokyo Gas"
  • "Beijing SinoHy Energy"

 

 

The Anion Exchange Membrane (AEM) Electrolyser market is increasingly competitive, dominated by key players such as Enapter, SPF Hydrogen Energy, and Alchemr. Enapter leads with its highly modular AEM technology, allowing for flexible integration and efficient production. SPF Hydrogen Energy has focused on scaling production to address growing hydrogen demands, leveraging partnerships to enhance its market presence. Alchemr distinguishes itself through cost-effective and customizable solutions, appealing to diverse industrial sectors.

Emerging competitors like HydroLite and EvolOH are gaining traction due to their innovative approaches; HydroLite's focus on miniaturized systems enhances accessibility for smaller applications, while EvolOH has developed a unique hybrid model that combines AEM with other technologies, optimizing efficiency.

Recent developments have seen increased governmental and institutional support for hydrogen technologies, driven by sustainability goals. This trend has created favorable market conditions, enhancing competition and innovation. Although exact market share data varies, estimates suggest that the top three companies hold a combined revenue share exceeding 50%, indicating their strong foothold. The dynamic interplay among established players and emerging entrants suggests a rapidly evolving market landscape poised for significant growth driven by technological advancements and rising demand for clean energy solutions.



The Anion Exchange Membrane (AEM) Electrolyser Market is categorized into:

 

 

The Anion Exchange Membrane (AEM) Electrolyser market can be categorized into three main segments based on power capacity:

1. **Below 500 kW**: This category includes small-scale AEM electrolysers, often used for applications like hydrogen production in remote areas or for small industrial use. They are suited for decentralized energy systems and offer flexibility for integration with renewable sources.

2. **500-1000 kW**: These medium-sized electrolysers are designed for larger commercial applications. They provide a balance between efficiency and scale, suitable for industries seeking to produce hydrogen on-site, thereby reducing transportation costs and enhancing sustainability.

3. **Above Megawatt**: This segment features large-scale AEM electrolysers, ideal for extensive industrial applications and hydrogen production hubs. They enable large hydrogen output to support heavy industries and energy storage systems, playing a crucial role in transitioning to a hydrogen economy.

 

Segmenting the Market by Application:

The Anion Exchange Membrane (AEM) Electrolyser Market is divided by application into:

 

  • "Chemical Industry"
  • "Oil and Gas"
  • "Mining Industry"
  • "Steel Industry"
  • "Others

 

The Anion Exchange Membrane (AEM) Electrolyser market finds diverse applications across multiple industries. In the chemical industry, it facilitates efficient hydrogen production for synthesis processes. The oil and gas sector benefits from hydrogen generation for refining and petrochemical applications. In mining, AEM electrolysers support sustainable practices through the provision of hydrogen for processing minerals. The steel industry utilizes hydrogen for reducing iron ore. Other applications include energy storage and renewable energy integration, reflecting the technology's versatility in various sectors.

 

Posted by Morning lark
, |

동결 주조(freeze-casting) 기법과 직접 전해질막 증착(DMD) 기법의 혼합을 통한 일체형 막-전극 접합체 개략도,

광주과학기술원(GIST·총장 임기철)은 박찬호 화학과 교수와 문승현 환경·에너지공학과 초빙석학교수, 김재훈 포스코 홀딩스 박사가 공동으로 동결건조 과일처럼 내부에 구멍이 많은 다공성 구조를 연료전지 전극 설계에 적용해 연료전지 전극의 출력과 안정성을 동시에 높일 수 있는 새로운 막-전극 접합체(MEA) 구조를 개발했다고 15일 밝혔다.

이번 연구의 핵심은 동결건조 기술로 만든 다공성 촉매층과 전해질막을 연속적으로 하나의 구조로 결합함으로써 연료전지 반응의 핵심 공간인 '삼상계면'을 평면이 아닌 3차원(3D) 입체 구조로 확장했다는 점이다. 가스 확산과 반응 효율을 동시에 개선해 이동형 연료전지 기술로의 활용 가능성을 크게 높였다.

고분자전해질막 연료전지(PEMFC)는 수소로 전기를 만들고 배출가스 대신 물만 내보내는 친환경 에너지 변환 기술로, 수소 전기차를 비롯한 중·대형 운송수단에 폭넓게 활용되고 있다.

하지만 PEMFC에서 백금 촉매 사용량을 줄이면서도 높은 출력과 장기 안정성을 동시에 확보하는 것이 큰 과제다. 실제 반응이 일어나는 삼상계면이 기존 박막형 촉매층에서는 촉매층과 전해질막 사이의 얇은 2차원 계면에 국한돼 가스 확산과 이온 전달이 원활하지 않고 계면 접합 안정성도 떨어진다는 한계가 있었다.

일체형 막-전극 접합체의 전자현미경 (SEM) 단면 및 원소 분포 이미지 (a) 전체 원소, (b) 백금 분포, (c) 불소 분포, (d) 황 분포.

연구팀은 얼음이 한쪽 방향으로 자라도록 하는 동결 주조와 동결건조 공정을 결합한 새로운 전극 제조 방식을 도입했다. 얼음 결정이 특정 방향으로 성장하면서 내부에 벌집 모양처럼 수직으로 정렬된 구멍이 만들어지고, 이 구조 덕분에 촉매층 내부에서 가스가 원활하게 이동하며 가스 확산이 극대화됐다.

이 방식으로 제작된 촉매층은 두께가 약 30 ㎛로 내부에 직선에 가까운 가스 이동 통로가 형성됐다. 기공률은 약 49%, 기공 부피는 0.27 ㎖/g 수준으로 증가해 기존 스프레이 방식 촉매층보다 두 배 이상 많은 기공을 확보했다. 이러한 구조는 산소 확산과 물 배출을 원활하게 하여 반응 효율을 높이는 데 직접적인 역할을 한다.

여기에 더해 완성된 전해질막을 전극에 접합하는 기존 방식 대신, 전해질 고분자를 촉매층 위에 직접 도포해 막을 형성하는 직접 전해질막 증착기법을 적용했다. 그 결과 계면 결착력이 강화되고, 전자와 수소 이온의 이동 경로가 동시에 개선됐다.

 

전기화학 분석 결과, 삼상계면이 평면에서 입체 구조로 확장되면서 전기가 흐르고 수소 이온이 이동하는 과정이 모두 원활해졌다. 연료전지 반응 효율이 높아지고, 전체 성능이 개선된 것으로 확인됐다.

이번 연구에서 개발한 통합형 막-전극 접합체는 높은 기공률과 큰 기공 부피를 통해 가스 확산을 향상시키는 동시에, 수소이온 확산저항과 전하 전달저항을 감소시키는 최적화로 고출력과 우수한 내구성을 함께 달성한 것이 특징이다. 향후 전기차·트럭 등 중·대형 이동형 연료전지 시스템을 비롯한 고성능 응용 분야에서 활용 가능성을 크게 넓힐 것으로 기대된다.

박찬호 교수는 “동결 주조와 직접 막 증착을 결합한 일체형 구조로 가스·전자·수소 이온의 이동 경로를 동시에 최적화할 수 있었다”며 “청정에너지인 수소를 전기로 전환하는 연료전지의 성능과 안정성을 함께 개선할 수 있는 새로운 전극·막 제조 공정을 제시했다는 점에서 향후 전극 구조 개발의 방향성을 제시하는 중요한 연구”라고 말했다.

 

“연료전지 전극 출력·안정성 동시 개선”…GIST, 새로운 MEA 구조 개발 - 전자신문

 

“연료전지 전극 출력·안정성 동시 개선”…GIST, 새로운 MEA 구조 개발

광주과학기술원(GIST·총장 임기철)은 박찬호 화학과 교수와 문승현 환경·에너지공학과 초빙석학교수, 김재훈 포스코 홀딩스 박사가 공동으로 동결건조 과일처럼 내부에 구멍이 많은 다공성 구

m.etnews.com

 

Posted by Morning lark
, |